• 제목/요약/키워드: Piezoelectric composite

검색결과 408건 처리시간 0.025초

Computational thermal stability and critical temperature buckling of nanosystem

  • Chengda Zhang;Haifeng Hu;Qiang Ma;Ning Wang
    • Advances in nano research
    • /
    • 제14권6호
    • /
    • pp.575-590
    • /
    • 2023
  • Many of small-scale devices should be designed to tolerate high temperature changes. In the present study, the states of buckling and stability of nano-scale cylindrical shell structure integrated with piezoelectric layer under various thermal and electrical external loadings are scrutinized. In this regard, a multi-layer composite shell reinforced with graphene nano-platelets (GNP) having different patterns of layer configurations is modeled. An outer layer of piezoelectric material receiving external voltage is also attached to the cylindrical shell for the aim of observing the effects of voltage on the thermal buckling condition. The cylindrical shell is mathematically modeled with first-order shear deformation theory (FSDT). Linear elasticity relationship with constant thermal expansion coefficient is used to extract the relationship between stress and strain components. Moreover, minimum virtual work, including the work of the piezoelectric layer, is engaged to derive equations of motion. The derived equations are solved using numerical method to find out the effects of temperature and external voltage on the buckling stability of the shell structure. It is revealed that the boundary condition, external voltage and geometrical parameter of the shell structure have notable effects on the temperature rise required for initiating instability in the cylindrical shell structure.

Effects of graphene platelet presence and porosity distribution on the vibration of piezoelectric sinusoidal sandwich beam

  • Mojtaba Mehrabi;Keivan Torabi
    • Structural Engineering and Mechanics
    • /
    • 제91권1호
    • /
    • pp.87-102
    • /
    • 2024
  • In recent years, the focus on vibration analysis of multilayer smart structures has attracted considerable attention in many engineering applications. In this work, vibration analysis of a three-layer microporous beam with a core amplified by a composite material reinforced with graphene platelets and two piezoelectric thin films is discussed. It is assumed that piezoelectric layers with a thickness of 0.01 core are very thin and the properties of the matrix and reinforcement vary in the thickness directions. The governing equations of motion are obtained using an energy approach and the method of numerical differential quadrature to solve them. The results of this work are compared to other research and there is good agreement between them. The influences of the volumetric weight fraction of graphene wafers, different graphene platelets distributions, porosity distribution, mass scale parameters and thin ratio of graphene platelets take into account the natural dimensionless frequencies of the micro-beam. The results of this study show that the symmetric distribution of graphene platelets based on the symmetric porosity distribution has a great influence on the natural frequencies without basic dimension of the micro-beam, while the shape ratios of graphene platelets do not have a significant influence on natural frequency changes.

시스템식별과 최적제어를 이용한 지능형 복합적층판의 다중보드 진동제어 (Multi-modal Vibration Control of Intelligent Laminated Composite Plates Using System Identification and Optimal Control)

  • 김정수;강영규;박현철
    • 한국소음진동공학회논문집
    • /
    • 제12권1호
    • /
    • pp.5-11
    • /
    • 2002
  • Active vibration control of intelligent laminated composite plates is performed experimental1y Laminated composite place is modeled by the system identification method. For the system identification process, the laminated composite place is excited by two piezoelectric actuators with PRBS signals. At the same time, the displacement of the laminated composite plate is measured by a gap sensor. From these excited PRBS signals and the measured displacement sequence, system parameters of the laminated composite plate are estimated using a recursive prediction error method. Model of the laminated composite plate with two piezoeletric actuators is assumed to be the form of ARMAX. From the estimated ARHMAX model, a state space equation of the observable canonical form is obtained. With this state space equation, a controller and an observer for active vibration control is designed using the optimal control method. Controller and observer are implemented on a digital system. Experiments on the vibration control are Performed with changing the outer layer fiber orientation of intelligent composite plates.

"Dice와 fill" 방식을 이용한 1-3 압전복합재의 제조와 횡방향 단위 크기에 따른 압전특성 평가 (Fabrication of 1-3 Piezo-composites with a "Dice & Fill" Method and Characterization of Their Piezoelectric Properties as a Function of Lateral Spatial Scale)

  • 김영덕;김광일;정우철;김흥락;김동수
    • 비파괴검사학회지
    • /
    • 제22권4호
    • /
    • pp.354-360
    • /
    • 2002
  • NDT나 의료용 영장장치에 응용되는 압전복합재는 일반적인 세라믹이나 고분자 압전재료에 비하여 많은 장점을 가진다. 이들 응용분야에서는 전기기계결합계수가 높아야 하고 음향임피던스가 낮아야 한다. 그러나, 압전복합재의 횡방향 단위 크기가 조밀하지 못할 경우 횡방향으로 진행하는 판파에 의한 불필요한 진통이 표면에 발생하게 된다. 횡방향 단위 크기와 세라믹 체적비에 따른 압전 특성을 조사하기 위하여 PMN-PZT 세라믹과 Epofix 에폭시로 에폭시의 폭의 달리하면서 1-3형 압전복합채를 제작하였다. 제작된 1-3형 압전복합재의 두께방향 진동모드의 전기기계결합계 수, 음향임피던스는 각각 $0.36{\sim}0.64,\;9.8{\sim}22.7MRayl$ MRayl로 나타났으며, 횡방향 단위크기가 줄어들수록 횡방향 모드 공진 주파수가 증가하였다.

Generation of Hydrogen Peroxide by Single-Atom Clusters Pd Anchored on t-BaTiO3 for Piezoelectric Degradation of Tetracycline

  • Xin Ni;Yuan Liang;Quanzi Pan;Hengjie Guo;Kai Chen;Bo Zhang;Shaocong Ni;Bin Sheng;Zeda Meng;Shouqing Liu;Won-Chun Oh
    • 한국재료학회지
    • /
    • 제33권11호
    • /
    • pp.447-457
    • /
    • 2023
  • Single-atom Pd clusters anchored on t-BaTiO3 material was synthesized using hydrothermal and ultrasonic methods for the effective piezoelectric catalytic degradation of pollutants using vibration energy. XRD patterns of BaTiO3 loaded with monoatomic Pd were obtained before and after calcining, and showed typical cubic-phase BTO. TEM and HAADF-STEM images indicated single-atom Pd clusters were successfully introduced into the BaTiO3. The piezoelectric current density of the prepared Pd-BaTiO3 binary composite was significantly higher than that of the pristine BaTiO3. Under mechanical vibration, the nanomaterial exhibited a tetracycline decomposition rate of ~95 % within 7 h, which is much higher than the degradation rate of 56.7 % observed with pure BaTiO3. Many of the piezo-induced electrons escaped to the Pd-doped BaTiO3 interface because of Pd's excellent conductivity. Single-atom Pd clusters help promote the separation of the piezo-induced electrons, thereby achieving synergistic catalysis. This work demonstrates the feasibility of combining ultrasonic technology with the piezoelectric effect and provides a promising strategy for the development of ultrasonic and piezoelectric materials.

DOB-based piezoelectric vibration control for stiffened plate considering accelerometer measurement noise

  • Li, Shengquan;Zhao, Rong;Li, Juan;Mo, Yueping;Sun, Zhenyu
    • Smart Structures and Systems
    • /
    • 제14권3호
    • /
    • pp.327-345
    • /
    • 2014
  • This paper presents a composite control strategy for the active suppression of vibration due to the unknown disturbances, such as external excitation, harmonic effects and control spillover, as well as high-frequency accelerometer measurement noise in the all-clamped stiffened plate. The proposed composite control action based on the modal approach, consists of two contributions including feedback part and feedforward part. The feedback part is the well-known PID controller, which is widely used to increase the structure damping and improve its dynamic performance close to the resonance frequencies. In order to get better performance for vibration suppression, the weight matrixes is optimized by chaos sequence. Then an improved disturbance observer (IDOB) as the feedforward compensation part is developed to enhance the vibration suppression performance of PID under various disturbances and uncertainties. The proposed IDOB can simultaneously estimate the various disturbances dynamically as well as measurement noise acting on the system and suppress them by feedforward compensation design. A rigorous analysis is also given to show why the IDOB can effectively suppress the unknown disturbances and measurement noise. In order to verify the proposed composite control algorithm (IDOB-PID), the dSPACE real-time simulation platform is used and an experimental platform for the all-clamped stiffened plate active vibration control system is set up. The experimental results demonstrate the effectiveness, practicality and strong anti-disturbances ability of the proposed control strategy.

고분자 압전센서 신호를 이용한 Gr/Ep 복합재 적층판의 손상유발 충격하중의 복원 (Reconstruction of Damage-Induced Impact Force of Gr/Ep Composite Laminates Using Piezoelectric Thin Film Sensor Signals)

  • 박찬익;김인걸;이영신
    • Composites Research
    • /
    • 제15권5호
    • /
    • pp.7-13
    • /
    • 2002
  • 압전필름센서는 복합재 구조물의 저속충격응답을 관측하기에 우수한 특성을 지니고 있다. 본 연구에서는 Gr/Ep 복합재 적층판이 손상이 발생할 수 있을 정도의 충격에너지를 받았을 때 압전필름센서 신호를 이용하여 충격거동을 모니터링할 수 있는 가능성에 대하여 고찰하였다. 손상이 발생하지 않는 저에너지 충격조건부터 국부적인 손상을 유발할 수 있는 충격조건까지 압전필름센서가 부착된 Gr/Ep 복합재 적층판에 대하여 16가지의 저속충격시험을 수행하였다. 세 가지 조거의 충격시험에서 기지균열 및 층간분리 등의 국부적인 손상이 발생하였으나, 충격력과, 변위, 변형률, 압전센서 신호와의 관계를 이용한 선형해석 모델을 사용하여 충격하중에 의한 복합재 적층판의 응답을 예측하는 정방향 문제와 압전센서 신호로부터 충격력을 복원하는 역방향 문제에서 시험과 해석 결과는 비교적 잘 일치하는 경향을 보였다. 복원된 충격력으로부터 국부적인 손상이 발생할 정도의 충격까지는 압전필름센서 신호를 이용하여 충격력을 정확히 복원할 수 있음을 확인하였다.

신경망 제어기를 이용한 광섬유가 부착된 복합재 보의 진동제어 (Neuro-Adaptive Vibration Control of a Composite Beam with Optical Fiber Sensor)

  • 김도형;양승만;한재흥;김대현;이인;김천곤;홍창선
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2002년도 춘계학술발표대회 논문집
    • /
    • pp.135-138
    • /
    • 2002
  • Experimental studies on vibration control of a composite beam with a piezoelectric actuator and an extrinsic Fabry-Perot interferometer (EFPI) have been performed using a neural network controller and an LQG controller. Vibration control performance was investigated in the nonlinear sensing range according to the vibration amplitudes. Using a neuro-controller, adaptive vibration control experiment has been performed for the structure with frequency variations, and its performance is compared with that of an LQG controller. The vibration control results show that the neuro-controller has good performance and robustness with respect to the system parameter variations.

  • PDF

압전센서와 액츄에이터를 이용한 복합재 평판의 진동제어 (Vibration Control of a Composite Plate with Piezoelectric Sensor and Actuator)

  • 권대규;유기호;이성철
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.207-210
    • /
    • 2002
  • This paper is concerned with the experiments on the active vibration control of a plate with piezoceramic sensors and actuators. The natural frequencies of the composite plate featured by a piezo-film sensor and piezo-ceramic actuator are calculated by using the modal analysis method. Modal coordinates are introduced to obtain the state equations of the structural system. Six natural frequencies were considered in the modelling, because robust control theory which has inherent robustness to structured uncertainty is adopted to suppress the transients vibrations of a glass fiber reinforced(GFR) composite beam. A robust controller satisfying the nominal performance and robust performance is designed using robust theory based on the structured singular value. Simulations were carried out with the designed controller and effectiveness of the robust control strategy was verified by results.

  • PDF

Lamb wave-based damage imaging method for damage detection of rectangular composite plates

  • Qiao, Pizhong;Fan, Wei
    • Structural Monitoring and Maintenance
    • /
    • 제1권4호
    • /
    • pp.411-425
    • /
    • 2014
  • A relatively low frequency Lamb wave-based damage identification method called damage imaging method for rectangular composite plate is presented. A damage index (DI) is generated from the delay matrix of the Lamb wave response signals, and it is used to indicate the location and approximate area of the damage. The viability of this method is demonstrated by analyzing the numerical and experimental Lamb wave response signals from rectangular composite plates. The technique only requires the response signals from the plate after damage, and it is capable of performing near real time damage identification. This study sheds some light on the application of Lamb wave-based damage detection algorithm for plate-type structures by using the relatively low frequency (e.g., in the neighborhood of 100 kHz, more suitable for the best capability of the existing fiber optic sensor interrogator system with the sampling frequency of 500 kHz) Lamb wave response and a reference-free damage detection technique.