• Title/Summary/Keyword: Piezoelectric Ultrasonic Linear Motor

Search Result 54, Processing Time 0.049 seconds

Comparison of Characteristics between $L_1-B_4$ mode and $L_1-B_8$ mode Ultrasonic Motors ($L_1-B_4$모드와 $L_1-B_8$모드 초음파 선형 전동기의 특성 비교)

  • U, Sang-Ho;Kim, Dong-Yeon;Kim, Jin-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2002.07c
    • /
    • pp.1518-1520
    • /
    • 2002
  • Purpose of this research compares best transfer speed about applied frequency and voltage using characteristic of $L_1-B_4$ mode and $L_1-B_8$ mode linear ultrasonic motor that use piezoelectric effect. By method of study, analyzed best transfer speed measuring and comparison load status that use actuality telephone card in $L_1-B_4$ mode linear ultrasonic motor and no-load status of $L_1-B_8$ mode linear ultrasonic motor. Experiment result is applied frequency(58.4Hz) in $L_1-B_4$ mode linear ultrasonic motor (load state) and the best transfer speed by 19.8[cm/s] at applied voltage(56V) point. Also, $L_1-B_8$ mode linear ultrasonic motor (no-load state) is best transfer speed by applied frequency(27.9kHz) and 32.96[cm/s] at applied voltage (50V) point.

  • PDF

A Study on the Characteristics of Linear Ultrasonic Motor Using Langevin type Piezoelectic Transducer (란쥬반형 압전 진동자를 이용한 선형 초음파 모터의 특성연구)

  • Choi, Myeong-Il;Park, Tae-Gone;Kim, Myeong-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2003.10a
    • /
    • pp.137-139
    • /
    • 2003
  • Transducer for ultrasonic linear motor with the symmetric and anti-symmetric modes was studied. The ultrasonic linear motor consists of two Langevin type piezoelectric vibrators that cross at right angles with each other in tip. In order to excite symmetric and anti-symmetric modes, the transducer must have a phase shift of 90 degree in space and time. Therefore, the tip of transducer moves on an elliptical motion. In this paper, the finite element analysis was used to optimize dimension and displacement of the transducer The ultrasonic motor was fabricated using the simulated result and the driving characteristics were measured. No-load velocity was 0.28[m/s] and the maximum efficiency was 30[%] in resonance frequency.

  • PDF

A Characteristic of Linear Ultrasonic Motor using Langevin Type Transducer (Langevin 진동자를 이용한 선형 초음파 모터의 특성)

  • Seo, San-Dong;Park, Tae-Gone
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07b
    • /
    • pp.627-630
    • /
    • 2004
  • Transducer for linear ultrasonic motor with symmetric and anil anti-symmetric modes was studied. The transducer was composed of two Langevin-type vibrators that cross at right angles with each other at tip. In order to excite two vibration modes, two Langevin-type vibrators must have 90-degree phase difference with each other. As a result, tip of transducers moves in elliptical motion. Elliptical trajectoric of transducer was analyzed by employing the finite element method. From these results, the ultrasonic motor was fabricated and was measured for characteristics. In this paper compared an ANSYS analysis with an experiment results. The no-road maximum speed was 113.1[cm/s].

  • PDF

Characteristics of Linear Ultrasonic Motor Using $L_1-B_4$ Mode Unimorph-TyPe and Bimorph-Type Vibrator ($L_1-B_4$ 모드 유니몰프형과 바이몰프형 진동자를 이용한 선형 초음파 모터의 특성)

  • Kim, Beom-Jin;Jeong, Dong-Seok;Kim, Tae-Yeol;Park, Tae-Gon;Kim, Myeong-Ho;Uchino, Kenji
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.50 no.9
    • /
    • pp.427-433
    • /
    • 2001
  • A linear ultrasonic motor was designed by a combination of the first longitudinal and fourth bending mode, and the motor consisted of a straight aluminum alloys bar bonded with a piezoelectric ceramic element as a driving element. That is,$L_1-B_4$ linear ultrasonic motor can be constructed by a multi-mode vibrator of longitudinal and bending modes. Linear ultrasonic motors are based on an elliptical motion on the surface elastic body, such as bar or plates. In general, the natural resonance frequency of the stator is used as a driving frequency of the motor which provides a large elliptical motion. The corresponding eigenmode of one resonance frequency can be excited twice at the same time with a Phase shift of 90 degrees in space and time. And the rotation can be reversed by changing the phase between the two signals from sin$\omega$t to cos$\omega$t. Moreover, the tangential force pushes the slider(rotor) and, therefore, determines the thrust and speed of the motor. The experimental results of fabrication motors, bimorph-tyPe motor showed more excellent than unimorph-type. The maximum speed of TBL-200, TBL-300, TBL-400, TBL -220, TBL-310 and TBL-420 motors were 0.12, 0.37, 0.39, 0.14, 0.55 and $0.60ms6{-1}$, respectively. And the efficiency were reported 1.15, 7.9, 6.6, 2.36, 10.1 and 16.5%, respectively. That time, output thrust of the motor was a strong(1~2N) and the weight of stator was a lightness(5~7g).

  • PDF

Dynamic properties of butterfly piezoelectric linear motor by applied voltage (인가 전압에 따른 초소형 압전 리니어모터의 동특성)

  • Lee, Won-Hee;Kang, Chong-Yun;Ju, Byeong-Kwon;Yoon, Seok-Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.233-233
    • /
    • 2008
  • A piezoelectric ultrasonic linear motor shaped with 'Butterfly' wings has been developed for thin electronics such as cellular phone and PDA. The butterfly piezoelectric transducer is simply composed of an elastic plate, which includes a tip for energy transfer and two protrusions to fix it, and two piezoelectric ceramics. Contact materials, such as a brass, and steel and alumina can make it possible to improve dynamic properties of the motors over a wide range of tribological conditions. The dynamic properties of the motor have been intensively measured and analyzed according to the applied voltage wave forms at the various frequencies. The results of numerical study and experimental investigation will be used for the future optimization of the actuator and the realization of the advanced ultrasonic motor.

  • PDF

Design and Trial Fabrication of Plate-Type Linear Ultrasonic Motor Using L1-B4 Vibration Mode (L1-B4 진동모드를 이용한 평판형 선형 초음파 모터의 설계 및 시제작)

  • 이종섭;정수현;임기조;임태빈;강성택;채홍인
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.10
    • /
    • pp.861-865
    • /
    • 1998
  • A plate-type linear ultrasonic motor using logitudinal and bending multi-vibration mode was designed and fabricated for the application to card-forwarding device. The stator consisted of PZ-PT-PMS piezoelectric ceramic plate and stainless steel. The performances of the motor were measured. As the experimental results, no-load speed of the motor was 0.6m/s when applied voltage was $80\textrm{V}_{rms}$ in resonance frequency. Starting torque was 1.4 mNm and maximum efficiency was 1.2%.

  • PDF

Linear Actuator using Tuned Modes of a Piezoelectric Plate (압전 플레이트의 모드 튜닝을 이용한 선형 엑츄에이터 설계)

  • Choi, Yo-Han;Lee, Seung-Yop;Lee, Sang-Gu
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.484-487
    • /
    • 2006
  • In this paper, linear ultrasonic actuators are designed using two dimensional motions of a PMW-PT piezoelectric plate. By equalizing the natural frequencies of longitudinal and transverse vibration modes in the cantilever structure, the ultrasonic motion of the combined vibration modes are generated. We have designed two different PMN-PT actuators: one uses a tip attached on the edge of the actuator and it drives the object in the perpendicular direction of the tip. In other model, the actuator plate moves itself through stationary guides. Prototypes of the two models are manufactured and experiments results are compared to the theoretical and numerical results. The effects of structural characteristics and the friction force existing between the actuator tip and the moving object are considered. Experiments show the possibility of small size ultrasonic linear motors which can be applicable to small form factor information storage and phone camera actuators.

  • PDF

Design of Linear Ultrasonic Motor for Small tong Actuation (렌즈 구동을 위한 선형 초음파 전동기 설계)

  • Kwon Taeseong;Lee Seung-Yop;Kim Sookyung
    • 정보저장시스템학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.190-194
    • /
    • 2005
  • There is a great demand of micro-actuators for mobile information devices such as SFF optical drives and mobile camera phones. However, conventional magnetic coils of electromagnetic motors are a major obstacle for miniaturization because of their complicated structures and large power consumption. In this paper, a linear ultrasonic motor to actuate focusing lens of mobile devices is proposed. The new actuator uses a ring type bimorph piezoelectric material, and $d_{31}$ mode is adopted for applying linear motion. The interaction between inertia force and friction force makes linear motion by high-frequency saw signal input. The saw signal gives steady forces on the one direction by asymmetric inclination property of the signal itself on time domain. A commercial FEM (ANSYS) was used in this investigation for simulating structural analysis, identification of dynamic property, such as resultant displacement and coupled analysis with piezoelectric material. To evaluate the performance of the new design, a prototype was manufactured and experiments were carried out. Experimental results show the actuator motion of 1.52 mm/s at 10 kHz input signal in 5 V.

  • PDF

A Study on the Characteristics of Ultrasonic Linear Motor Using Piezoelectirc Ceramics (압전세라믹을 이용한 초음파 리니어 모터의 특성연구)

  • Choi, Myeong-Il;Jeong, Dong-Seok;Chong, Hyon-Ho;Lee, Jae-Hyung;Park, Tae-Gone
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.664-668
    • /
    • 2003
  • Transducer for ultrasonic linear motor with the symmetric and anti-symmetric modes was studied. The ultrasonic linear motor consists of two Langevin type piezoelectric vibrators that cross at right angles with each other in tip. In order to excite symmetric and anti-symmetric modes, the transducer must have a phase shift of 90 degree in space and time. Therefore, the tip of transducer moves on an elliptical motion. In this paper, the finite element analysis was used to optimize dimension and displacement of the transducer. The ultrasonic motor was fabricated using the simulated result and the driving characteristics were measured. No-load velocity was 0.28[m/s] and the maximum efficiency was 30[%] in resonance frequency.

  • PDF

Design of a Linear Ultrasonic Actuator for Small Lens Actuation (초소형 렌즈 구동을 위한 선형 초음파 구동기 설계)

  • Kwon, Tae-Seong;Choi, Yo-Han;Lee, Seung-Yop
    • Transactions of the Society of Information Storage Systems
    • /
    • v.2 no.4
    • /
    • pp.251-256
    • /
    • 2006
  • There is a great demand of micro-actuators for mobile information devices such as SFF optical drives and mobile phone cameras. However, the magnetic coils used in conventional electromagnetic motors are a major obstacle for the miniaturization because of their complicated structures and large power consumption. In this paper, a linear ultrasonic motor to actuate focusing lens of mobile devices is proposed. The new actuator uses a ring type bimorph piezoelectric material, and $d_{31}$ mode is adopted for applying linear motion. The interaction between inertia force and friction force makes linear motion by high-frequency saw signal input. The saw signal gives steady forces on the one direction by asymmetric inclination property of the signal itself on time domain. A commercial FEM(ANSYS) was used in this investigation for simulating structural analysis, identification of dynamic property, such as resultant displacement and coupled analysis with piezoelectric material. To evaluate the performance of the new design, a prototype was manufactured and experiments were carried out. Experimental results show the actuator motion of 5.4 mm/s at 10V saw signal of 41 kHz.

  • PDF