• Title/Summary/Keyword: Piezoelectric Stack Actuator

Search Result 31, Processing Time 0.017 seconds

Experimental Analysis of Operating Parameters for Piezoelectric Jetting Dispenser (압전 젯팅 디스펜서의 작동 변수에 대한 실험적 분석)

  • Sohn, Jung Woo;Hong, Seung-Min;Kim, Gi-Woo;Choi, Seung-Bok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.10
    • /
    • pp.685-691
    • /
    • 2015
  • In this work, to identify effective parameter for performance of piezoelectric jetting dispenser, experimental investigation is carried out based on design of experiment. After preparing jetting dispenser using two stack-type piezoelectric actuators, basic working principle of the jetting dispenser is described. Eight operating conditions are chose as main factors and it is assumed that each factor has two levels. To reduce number of experiments for performance evaluation, the experimental sets are designed based on factional factorial design method. Experimental setup is established and the weight of single dot is measured by using precision scale. The main and interaction effects of factors are analyzed using commercial statistical program and optimal operating condition for small amount and small variation of weight of dispensed single dot are determined.

Design of the Compound Smart Material Pump for Brake System of Small·Medium Size UAV (중소형 무인기 브레이크 시스템용 복합형 지능재료펌프 설계)

  • Lee, Jonghoon;Hwang, Jaihyuk;Yang, Jiyoun;Joo, Yonghwi;Bae, Jaesung;Kwon, Junyong
    • Journal of Aerospace System Engineering
    • /
    • v.9 no.3
    • /
    • pp.1-7
    • /
    • 2015
  • In this study, the design of compound smart materials hydraulic pump that can be applied to a small-medium size UAV having a limited space envelope and weight has been conducted. Compound Smart Material Pump(CSMP) proposed in this paper is composed of a pressurize pump and a flow pump for supplying the high pressure and fluid displacement to overcome the disadvantages of the piezoelectric actuator which has a small strain. Though this compound smart material pump has been designed as small size and lightweight as possible, it can sequentially supply the sufficient large flow rate and pressure required for the brake operation. For the design of CSMP, about 2,700 kg (6,000 lb) class fixed wing manned aircraft was selected. Based on the established requirements, the design of the CSMP have been done by strength, vibration, and fluid flow analysis.

Analysis of Hydraulic Characteristics of High Pressure Injector with Piezo Actuator (피에조 액츄에이터 적용 고압 인젝터의 유압 동특성 해석)

  • Lee, Jin-Wook;Min, Kyoung-Doug
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.4
    • /
    • pp.164-173
    • /
    • 2006
  • In the electro-hydraulic injector for the common rail Diesel fuel injection system, the injection nozzle is being opened and closed by movement of a injector's needle which is balanced by pressure at the nozzle seat and at the needle control chamber, at the opposite end of the needle. In this study, the piezo actuator was considered as a prime movers in high pressure Diesel injector. Namely a piezo-driven Diesel injector, as a new method driven by piezoelectric energy, has been applied with a purpose to develop the analysis model of the piezo actuator to predict the dynamics characteristics of the hydraulic component(injector) by using the AMESim code. Aimed at simulating the hydraulic behavior of the piezo-driven injector, the circuit model has been developed and verified by comparison with the experimental results. As this research results, we found that the input voltage exerted on piezo stack is the dominant factor which affects on the initial needle behavior of piezo-driven injector than the hydraulic force generated by the constant injection pressure. Also we know the piezo-driven injector has more degrees of freedom in controlling the injection rate with the high pressure than a solenoid-driven injector.

Inverse Hysteresis Modeling for Piezoelectric Stack Actuators with Inverse Generalized Prandtl-Ishlinskii Model (Inverse Generalized Prandtl-Ishlinskii Model를 이용한 압전 스택 액추에이터의 역 히스테리시스 모델링)

  • Ko, Young-Rae;Kim, Tae-Hyoung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.2
    • /
    • pp.193-200
    • /
    • 2014
  • Piezoelectric actuators have been widely used in various applications because they have many advantages such as fast response time, repeatable nanometer motion, and high resolution. However Piezoelectric actuators have the strong hysteresis effect. The hysteresis effect can degrade the performance of the system using piezoelectric actuators. In past study, the parameters of the inverse hysteresis model are computed from the identified parameters using the Generalized Prandtl-Ishlinskii(GPI) model to cancel the hysteresis effect, however according to the identified parameters there exist the cases that can't form the inverse hysteresis loop. Thus in this paper the inverse hysteresis modeling mothod is proposed using the Inverse Generalized Prandtl-Ishlinskii(IGPI) model to handle that problem. The modeling results are verified by experimental results using various input signals.

Modeling and Analysis of Active Mounting System for a Plate-Type Structure (플레이트 형태의 구조물에 대한 능동 마운팅 시스템의 모델링 및 해석)

  • Hong, Dongwoo;Kim, Byeongil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.10
    • /
    • pp.915-921
    • /
    • 2017
  • Recently, studies to reduce vibration and noise of automobiles have been actively conducted. However, previous studies did not concentrate on the optimization of the mount system with passive or active mounts. This study analytically studies an active mounting system with three active structural paths between source and receiver and the feasibility has been verified. Active mounting system has a coupled structure of piezoelectric stack actuators and passive mounts. A dynamic model of the whole system is prepared and the control force and phase of the stack actuators in each path are determined to target full isolation of each path. Its performance on vibration attenuation is investigated and based on it, optimized combinations of passive and active paths for the best attenuation are presented.

Analysis of Dynamic Characteristics in Two-stage Injection for CRDi Injectors Based on AMESim Environment (AMESim기반 CRDi용 인젝터의 2단분사 동적거동 특성해석)

  • Jo, In-Su;Kwon, Ji-Won;Lee, Jin-Wook
    • Journal of ILASS-Korea
    • /
    • v.17 no.2
    • /
    • pp.57-63
    • /
    • 2012
  • For reduction of CO, NOx and soot emission emitted by diesel diffusion combustion, the authors focused on injection actuator to improve fuel availability inside combustion chamber. In this study, it was investigated the internal dynamic characteristics of two-stage injection with diesel injectors with different driving type for the common rail direct injection by using the AMESim simulation code. The analysis parameter defined such as fuel pressure, injection hole's diameter and driven voltage. As the results, it was shown that the piezo-driven injector had a faster response and had better control capability than the solenoid-driven injector. It was found the piezo-driven injector can be utilized effectively as multiple injector than solenoid-driven injector.

Analysis of the Driving Performance in Piezo Injector for Clean Diesel Engine (친환경 디젤엔진용 차세대 피에조 인젝터의 구동성능 해석)

  • Lee, Jin-Wook;Kang, Kern-Yong;Min, Kyoung-Doug
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.33-34
    • /
    • 2006
  • In this study, a prototype piezo-driven Injector. as a new method driven by piezoelectric energy, has been designed and fabricated based on the concept of inverse piezo-electric effect to overcome the major drawbacks of conventional solenoid-driven injector with a fixed and slow control of injection rate. The effects of an electric control between the solenoid valve and piezo-ceramic stack for injector needle's driving on the dynamic characteristics were usually investigated. We found that this piezo-electric actuator has the main advantage to drastically reducing the time of injector nozzle opening, as well to exert higher force output levels.

  • PDF

Dielectric and Piezoelectric Properties in Multilayer Ceramic Actuator (적층형 세라믹 액츄에이터의 유전 및 압전특성)

  • Choi, Hyeong-Bong;Jeong, Soon-Jong;Ha, Mun-Su;Koh, Jung-Hyuk;Lee, Dae-Su;Song, Jae-Sung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07b
    • /
    • pp.615-618
    • /
    • 2004
  • The piezoelectricity and polarization of multilayer ceramic actuators, being designed to stack ceramic layer and electrode layer alternately, were investigated under a consideration of geometry, the thickness ratio of the ceramic layer to electrode layer The actuators were fabricated by tape-casting of $0.42PbTiO_3-0.38PbZrO_3-0.2Pb(Mn_{1/3}Nb_{2/3})O_3$ followed by laminating, burn-out and co-firing process. The actuators of $5\times5mm^2$ in area were formed in a way that $60{\sim}200{\mu}m$ thick ceramics were stacked 10 times alternately with $5{\mu}m$ thick electrode. Increase in polarization and electric field-displacement with increasing thickness ratio of the ceramic/electrode layer and thickness/cross section ratio were attributed to the change of $non-180^{\circ}/180^{\circ}$ domain ratio which was affected by the interlayer internal stress and Poisson ratio of ceramic layer. The piezoelectricity and actuation behaviors were found to be dependent upon the volume ratio (or thickness ratio) of ceramic layer relative to ceramic layer. Concerning with the existence of internal stress, the field-induced polarization and deformation were described in the multilayer actuator.

  • PDF

Vibration Characteristics of a Wire-Bonding Ultrasonic Horn (와이어 본딩용 초음파 혼의 진동 특성)

  • Kim, Young Woo;Yim, Vit;Han, Daewoong;Lee, Seung-Yop
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.2
    • /
    • pp.227-233
    • /
    • 2014
  • This study investigates the vibration characteristics of a wire-bonding piezoelectric transducer and ultrasonic horn for high-speed and precise welding. A ring-type piezoelectric stack actuator is excited at 136 kHz to vibrate a conical-type horn and capillary system. The nodal lines and amplification ratio of the ultrasonic horn are obtained using a theoretical analysis and FEM simulation. The vibration modes and frequencies close to the driving frequency are identified to evaluate the bonding performance of the current wire-bonder system. The FEM and experimental results show that the current wire-bonder system uses the bending mode of 136 kHz as the principal motion for bonding and that the transverse vibration of the capillary causes the bonding failure. Because the major longitudinal mode exists at 119 kHz, it is recommended that the design of the current wire-bonding system be modified to use the major longitudinal mode at the excitation frequency and to minimize the transverse vibration of capillary in order to improve the bonding performance.

Simultaneous precision positioning and vibration suppression of reciprocating flexible manipulators

  • Ma, Kougen;Ghasemi-Nejhad, Mehrdad N.
    • Smart Structures and Systems
    • /
    • v.1 no.1
    • /
    • pp.13-27
    • /
    • 2005
  • Simultaneous precision positioning and vibration suppression of a reciprocating flexible manipulator is investigated in this paper. The flexible manipulator is driven by a multifunctional active strut with fuzzy logic controllers. The multifunctional active strut is a combination of a motor assembly and a piezoelectric stack actuator to simultaneously provide precision positioning and wide frequency bandwidth vibration suppression capabilities. First, the multifunctional active strut and the flexible manipulator are introduced, and their dynamic models are derived. A control strategy is then proposed, which includes a position controller and a vibration controller to achieve simultaneous precision positioning and vibration suppression of the flexible manipulator. Next, fuzzy logic control approach is presented to design a fuzzy logic position controller and a fuzzy logic vibration controller. Finally, experiments are conducted for the fuzzy logic controllers and the experimental results are compared with those from a PID control scheme consisting of a PID position controller and a PID vibration control. The comparison indicates that the fuzzy logic controller can easily handle the non-linearity in the strut and provide higher position accuracy and better vibration reduction with less control power consumption.