• Title/Summary/Keyword: Piezoelectric Smart Structures

Search Result 253, Processing Time 0.022 seconds

On the static and dynamic stability of beams with an axial piezoelectric actuation

  • Zehetner, C.;Irschik, H.
    • Smart Structures and Systems
    • /
    • v.4 no.1
    • /
    • pp.67-84
    • /
    • 2008
  • The present contribution is concerned with the static and dynamic stability of a piezo-laminated Bernoulli-Euler beam subjected to an axial compressive force. Recently, an inconsistent derivation of the equations of motions of such a smart structural system has been presented in the literature, where it has been claimed, that an axial piezoelectric actuation can be used to control its stability. The main scope of the present paper is to show that this unfortunately is impossible. We present a consistent theory for composite beams in plane bending. Using an exact description of the kinematics of the beam axis, together with the Bernoulli-Euler assumptions, we obtain a single-layer theory capable of taking into account the effects of piezoelectric actuation and buckling. The assumption of an inextensible beam axis, which is frequently used in the literature, is discussed afterwards. We show that the cited inconsistent beam model is due to inadmissible mixing of the assumptions of an inextensible beam axis and a vanishing axial displacement, leading to the erroneous result that the stability might be enhanced by an axial piezoelectric actuation. Our analytical formulations for simply supported Bernoulli-Euler type beams are verified by means of three-dimensional finite element computations performed with ABAQUS.

Analysis on an improved resistance tuning type multi-frequency piezoelectric spherical transducer

  • Qin, Lei;Wang, Jianjun;Liu, Donghuan;Tang, Lihua;Song, Gangbing
    • Smart Structures and Systems
    • /
    • v.24 no.4
    • /
    • pp.435-446
    • /
    • 2019
  • The existing piezoelectric spherical transducers with fixed prescribed dynamic characteristics limit their application in scenarios with multi-frequency or frequency variation requirement. To address this issue, this work proposes an improved design of piezoelectric spherical transducers using the resistance tuning method. Two piezoceramic shells are the functional elements with one for actuation and the other for tuning through the variation of load resistance. The theoretical model of the proposed design is given based on our previous work. The effects of the resistance, the middle surface radius and the thickness of the epoxy adhesive layer on the dynamic characteristics of the transducer are explored by numerical analysis. The numerical results show that the multi-frequency characteristics of the transducer can be obtained by tuning the resistance, and its electromechanical coupling coefficient can be optimized by a matching resistance. The proposed design and derived theoretical solution are validated by comparing with the literature given special examples as well as an experimental study. The present study demonstrates the feasibility of using the proposed design to realize the multi-frequency characteristics, which is helpful to improve the performance of piezoelectric spherical transducers used in underwater acoustic detection, hydrophones, and the spherical smart aggregate (SSA) used in civil structural health monitoring, enhancing their operation at the multiple working frequencies to meet different application requirements.

Theoretical analyses for a 2-2 cement-based piezoelectric curved composite with electrode layers

  • Zhang, Taotao
    • Smart Structures and Systems
    • /
    • v.14 no.5
    • /
    • pp.961-980
    • /
    • 2014
  • Based on the general theory of elasticity, the static behavior of 2-2 cement-based piezoelectric curved composites is investigated. The actuator consists of 2 cement layers and 1 piezoelectric layer. Considering the electrode layer between the cement layer and the piezoelectric layer as the elastic layer, the exact solutions of the mechanical and electrical fields of the curved composites are obtained by utilizing the Airy stress function method. Furthermore, the theoretical results are compared with the FEM results and good agreements (with almost no error) are obtained, thus proving the validity of this study. Furthermore, the influence of certain parameters is discussed, which can help to get the desired displacements and stresses. Finally, it is seen that the analytical model established in this paper works well, which could benefit the design of this kind of cement-based smart devices.

Experimental Study of Adaptive Sliding Mode Control for Vibration of a Flexible Rectangular Plate

  • Yang, Jingyu;Liu, Zhiqi;Cui, Xuanming;Qu, Shiying;Wang, Chu;Lanwei, Zhou;Chen, Guoping
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.1
    • /
    • pp.28-40
    • /
    • 2015
  • This paper aims to address the intelligent active vibration control problem of a flexible rectangular plate vibration involving parameter variation and external disturbance. An adaptive sliding mode (ASM) MIMO control strategy and smart piezoelectric materials are proposed as a solution, where the controller design can deal with problems of an external disturbance and parametric uncertainty in system. Compared with the current 'classical' control design, the proposed ASM MIMO control strategy design has two advantages. First, unlike existing classical control algorithms, where only low intelligence of the vibration control system is achieved, this paper shows that high intelligent of the vibration control system can be realized by the ASM MIMO control strategy and smart piezoelectric materials. Second, the system performance is improved due to two additional terms obtained in the active vibration control system. Detailed design principle and rigorous stability analysis are provided. Finally, experiments and simulations were used to verify the effectiveness of the proposed strategy using a hardware prototype based on NI instruments, a MATLAB/SIMULINK platform, and smart piezoelectric materials.

Optimal placement of piezoelectric curve beams in structural shape control

  • Wang, Jian;Zhao, Guozhong;Zhang, Hongwu
    • Smart Structures and Systems
    • /
    • v.5 no.3
    • /
    • pp.241-260
    • /
    • 2009
  • Shape control of flexible structures using piezoelectric materials has attracted much attention due to its wide applications in controllable systems such as space and aeronautical engineering. The major work in the field is to find a best control voltage or an optimal placement of the piezoelectric actuators in order to actuate the structure shape as close as possible to the desired one. The current research focus on the investigation of static shape control of intelligent shells using spatially distributed piezoelectric curve beam actuators. The finite element formulation of the piezoelectric model is briefly described. The piezoelectric curve beam element is then integrated into a collocated host shell element by using nodal displacement constraint equations. The linear least square method (LLSM) is employed to get the optimum voltage distributions in the control system so that the desired structure shape can be well matched. Furthermore, to find the optimal placement of the piezoelectric curve beam actuators, a genetic algorithm (GA) is introduced in the computation model as well as the consideration of the different objective functions. Numerical results are given to demonstrate the validity of the theoretical model and numerical algorithm developed.

An anisotropic ultrasonic transducer for Lamb wave applications

  • Zhou, Wensong;Li, Hui;Yuan, Fuh-Gwo
    • Smart Structures and Systems
    • /
    • v.17 no.6
    • /
    • pp.1055-1065
    • /
    • 2016
  • An anisotropic ultrasonic transducer is proposed for Lamb wave applications, such as passive damage or impact localization based on ultrasonic guided wave theory. This transducer is made from a PMNPT single crystal, and has different piezoelectric coefficients $d_{31}$ and $d_{32}$, which are the same for the conventional piezoelectric materials, such as Lead zirconate titanate (PZT). Different piezoelectric coefficients result in directionality of guided wave generated by this transducer, in other words, it is an anisotropic ultrasonic transducer. And thus, it has different sensitivity in comparison with conventional ultrasonic transducer. The anisotropic one can provide more information related to the direction when it is used as sensors. This paper first shows its detailed properties, including analytical formulae and finite elements simulations. Then, its application is described.

Active Vibration Control of Smart Hull Structure in Underwater Using Micro-Fiber Composite Actuators (MFC 작동기를 이용한 수중 Hull 구조물의 능동 진동 제어)

  • Kwon, Oh-Cheol;Sohn, Jung-Woo;Choi, Seung-Bok
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.466-471
    • /
    • 2008
  • Structural vibration and noise are hot issues in underwater vehicles such as submarines for their survivability. Therefore, active vibration and noise control of submarine, which can be modeled as hull structure, have been conducted by the use of piezoelectric materials. Traditional piezoelectric materials are too brittle and not suitable to curved geometry such as hull structures. Therefore, advanced anisotropic piezoceramic actuator named as Macro-Fiber Composite (MFC), which can provide great flexibility, large induced strain and directional actuating force is adopted for this research. In this study, dynamic model of the smart hull structure is established and active vibration control performance of the smart hull structure is evaluated using optimally placed MFC. Actuating performance of MFC is evaluated by finite element analysis and dynamic modeling of the smart hull structure is derived by finite element method considering underwater condition. In order to suppress the vibration of hull structure, Linear-Quadratic-Gaussian (LQG) algorithm is adopted. After then active vibration control performance of the proposed smart hull structure is evaluated with computer simulation and experimental investigation in underwater. Structural vibration of the hull structure is decreased effectively by applying proper control voltages to the MFC actuators.

  • PDF

Mathematical modeling of actively controlled piezo smart structures: a review

  • Gupta, Vivek;Sharma, Manu;Thakur, Nagesh
    • Smart Structures and Systems
    • /
    • v.8 no.3
    • /
    • pp.275-302
    • /
    • 2011
  • This is a review paper on mathematical modeling of actively controlled piezo smart structures. Paper has four sections to discuss the techniques to: (i) write the equations of motion (ii) implement sensor-actuator design (iii) model real life environmental effects and, (iv) control structural vibrations. In section (i), methods of writing equations of motion using equilibrium relations, Hamilton's principle, finite element technique and modal testing are discussed. In section (ii), self-sensing actuators, extension-bending actuators, shear actuators and modal sensors/actuators are discussed. In section (iii), modeling of thermal, hygro and other non-linear effects is discussed. Finally in section (iv), various vibration control techniques and useful software are mentioned. This review has two objectives: (i) practicing engineers can pick the most suitable philosophy for their end application and, (ii) researchers can come to know how the field has evolved, how it can be extended to real life structures and what the potential gaps in the literature are.

A general method for active surface adjustment of cable net structures with smart actuators

  • Wang, Zuowei;Li, Tuanjie
    • Smart Structures and Systems
    • /
    • v.16 no.1
    • /
    • pp.27-46
    • /
    • 2015
  • Active surface adjustment of cable net structures is becoming significant when large-size cable net structures are widely applied in various fields, especially in satellite antennas. A general-duty adjustment method based on active cables is proposed to achieve active surface adjustment or surface profile reconfiguration of cable net structures. Piezoelectric actuators and voice coil actuators are selected for constructing active cable structures and their simplified mechanical models are proposed. A bilevel optimization model of active surface adjustment is proposed based on the nonlinear static model established by the direct stiffness method. A pattern search algorithm combined with the trust region method is developed to solve this optimization problem. Numerical examples of a parabolic cable net reflector are analyzed and different distribution types of active cables are compared.

Static analysis of a multilayer piezoelectric actuator with bonding layers and electrodes

  • Xiang, H.J.;Shi, Z.F.
    • Smart Structures and Systems
    • /
    • v.5 no.5
    • /
    • pp.547-564
    • /
    • 2009
  • Based on the theory of piezoelasticity, an analytical solution for a typical multilayer piezoelectric composite cantilever is obtained by the Airy function method. The piezoelectric cantilever may consist of any number of layers. Moreover, the material and thickness for different layers may be different. The solution obtained in the present paper is concise and can be easily applied for the bending analysis of multilayer piezoelectric actuators considering the effect of bonding layers and electrodes. At last, a comprehensive parametric study is conducted to show the influence of electromechanical coupling (EMC), the number of piezoelectric layers, the elastic modulus of elastic layer and the thickness ratio on the bending behavior of actuators. Some interesting results for the design of multilayer piezoelectric actuators are presented.