• Title/Summary/Keyword: Piezoelectric Sensors (PZT)

Search Result 91, Processing Time 0.028 seconds

Transverse Piezoelectric Coefficient ($e_{31,f}$) of Thick PZT films Fabricated by Sol-Gel Method with Thicknesses, Electrode Shapes and Poling Process (Sol-Gel 법으로 제조된 후막 PZT의 두께, 전극형상 및 분극 공정에 따른 $e_{31,f}$ 특성)

  • Park, Joon-Shik;Yang, Seong-Jun;Park, Kwang-Bum;Yoon, Dae-Won;Park, Hyo-Derk;Kim, Sung-Hyun;Kang, Sung-Goon;Choi, Tae-Hoon;Lee, Nak-Kyu;Na, Kyoung-Hoan
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1326-1331
    • /
    • 2003
  • Thick PZT films are required for the cases of micro actuators and sensors with high driving force, high breakdown voltage and high sensitivity, and so on. In this work, thick PZT films were fabricated by Sol-Gel multi-coating method. Total 8 types of samples using thick PZT films with thicknesses, about $1{\mu}m$ and $2{\mu}m$, and Pt top electrodes shapes for measuring transverse piezoelectric coefficient ($e_{31,f}$) were fabricated using MEMS processes. They were characterized by fabricated e31,f measurement system before and after poling. $e_{31,f}$ values of samples after poling were higher than before poling. Those of $2{\mu}m$ thick PZT films were also higher than $1{\mu}m$ thick PZT films. And those with long electrodes as top electrodes were also higher than shorter.

  • PDF

Structural Analysis and Characterization of PZT Fiber Fabricated by Electrospinning (Electrospinning법으로 제조된 PZT 섬유의 구조분석 및 특성평가)

  • Park, Chun Kil;Yun, Ji Sun;Jeong, Young Hun;Nam, Joong-Hee;Cho, Jeong Ho;Paik, Jong-Hoo;Jeong, Dae Young
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.6
    • /
    • pp.466-469
    • /
    • 2013
  • Currently, piezoelectric ceramics are being applied in various fields, such as ultrasonic sensors, vibration devices, sound filters, and various energy conversion devices. Flexible piezoelectric ceramics are widely studied in an effort to mitigate the disadvantages of their brittle and inductile properties. Structural damage to piezoelectric fibers is much less than that to thin films when piezoelectric fibers are twisted or bent. Therefore, stretchable devices can be fabricated if piezoelectric fibers are obtained using an elongated substrate. In this study, sintering processes of PZT ($Pb(Zr_{0.53}Ti_{0.47})O_3$) fibers prepared by electrospinning were optimized through the TGA and XRD analyses. The crystal structure and microstructure of the piezoelectric fibers were investigated by XRD, FE-SEM and TEM.

Development of Stretchable PZT/PDMS Nanocomposite Film with CNT Electrode

  • Yun, Ji Sun;Jeong, Young Hun;Nam, Joong-Hee;Cho, Jeong-Ho;Paik, Jong-Hoo
    • Journal of Sensor Science and Technology
    • /
    • v.22 no.6
    • /
    • pp.400-403
    • /
    • 2013
  • The piezoelectric composite film of ferroelectric PZT ceramic ($PbZr_xTi_{1-x}O_3$) and polymer (PDMS, Polydimethylsiloxane) was prepared to improve the flexibility of piezoelectric material. The bar coating method was applied to fabricate flexible nanocomposite film with large surface area by low cost process. In the case of using metal electrode on the composite film, although there is no problem by bending process, the electrode is usually broken away from the film by stretching process. However, the well-attached, flexible CNT electrode on PZT/PDMS film improved flexibility, especially stretchability. PZT particles was usually settled down into polymer matrix due to gravity of the weighty particle, so to improve the dispersion of PZT powder in polymer matrix, small amount of additives (CNT powder, Carbon nanotube powder) was physically mixed with the matrix. By stretching the film, an output voltage of PZT(70 wt%)/PDMS with CNT (0.5 wt%) was measured.

Effect of Microstructure on Piezoelectric Properties and TCC Behavior in PZT-PZN Ceramics (PZT-PZN 세라믹의 미세구조가 압전 특성 및 TCC 거동에 미치는 영향)

  • Seo, Intae;Choi, Yongsu;Cho, Yuri;Kang, Hyung-Won;Kim, Kang San;Cheon, Chae Il;Han, Seung Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.5
    • /
    • pp.445-451
    • /
    • 2022
  • Ultrasonic sensor is suitable as a next-generation autonomous driving assist device because its lower price compared to that of other sensors and its sensing stability in the external environment. Although Pb(Zr, Ti)O3 (PZT)-relaxor ferroelectric system has excellent piezoelectric properties, the change in capacitance is large in the daily operating temperature range due to the low phase transition temperature. Recently, many studies have been conducted to improve the temperature stability of ferroelectric ceramics by controlling the grain size and crystal structure, so it is necessary to study the effect of the grain size on the piezoelectric properties and the temperature stability of PZT-relaxor ferroelectric system. In this study, the piezoelectric properties, phase transition temperature, and temperature coefficient of capacitance (TCC) of 0.9 Pb(Zr1-xTix)O3-0.1 Pb(Zn1/3Nb2/3)O3 (PZTx-PZN) ceramics with various grain sizes were investigated. PZTx-PZN ceramics with larger grain size showed higher piezoelectric properties and temperature stability, and are expected to be suitable for ultrasonic devices in the future.

Effect of MnO2 on piezoelectric properties of PSN-PZT ceramics for piezoelectric actuator applications (압전 액츄에이터용 PSN-PZT 세라믹스의 압전 특성에 미치는 MnO2 첨가 효과)

  • Choi, J.W.;Song, K.H.;Kim, H.J.;Yoon, S.J.;Yoo, K.S.
    • Journal of Sensor Science and Technology
    • /
    • v.16 no.2
    • /
    • pp.120-125
    • /
    • 2007
  • The effect of $MnO_{2}$ as a sintering additive on the microstructures and the piezoelectric properties, especially mechanical quality factor, of 0.05 Pb$(Sb_{0.5}Nb_{0.5})O_{3}$-0.95 Pb$(Zr_{0.52}Ti_{0.48})O_{3}$ (PSN-PZT) piezoelectric ceramics was investigated. The samples were sintered at $1250^{\circ}C$ for 2 h. The crystal structure and surface morphology of the sample were examined using XRD and FE-SEM, respectively. A study on the influence of $MnO_{2}$ additives on the dielectric and piezoelectric properties showed that the $MnO_{2}$-added PSN-PZT system exhibited a high mechanical quality factor and well-situated piezoelectric properties. The optimized results of $d_{33}$ (319 pC/N), $k_{p}$ (55 %), and $Q_{m}$ (751.24) were obtained at 0.2 wt% $MnO_{2}$ added PSN-PZT piezoelectrics.

PZT Impedance-based Damage Detection for Civil Infrastructures (토목 구조물의 PZT Impedance 기반 손상추정기법)

  • S. H. Park;Y. Roh;C. B. Yun;J. H. Yi
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.04a
    • /
    • pp.373-380
    • /
    • 2004
  • This paper presents the feasibility of an impedance-based damage detection technique using piezoelectric (PZT) transducers for civil infrastructures such as steel bridges. The impedance-based damage detection method is based on monitoring the changes in the electrical impedance. Those changes in the electrical impedance are due to the electro-mechanical coupling property of the piezoelectric material and structure. An effective integrated structural health monitoring system must include a statistical process of damage detection that is automated and real time assessment of damage in the structure. Once measured, damage sensitive features from this impedance change can be statistically quantified for various damage cases. The results of the experimental study on three kinds of structural members show that cracks or loosened bolts/nuts near the PZT sensors may be effectively detected by monitoring the shifts of the resonant frequencies. The root mean square (RMS) deviations of impedance functions between before and after damages were also considered as a damage indicator. The subsequent statistical methods using the impedance signature of the PZT sensors were investigated.

  • PDF

Acoustic field simulation of a PZT4 disc projector using a coupled FE-BE method

  • Jarng, S.S.
    • Journal of Sensor Science and Technology
    • /
    • v.8 no.3
    • /
    • pp.211-218
    • /
    • 1999
  • This paper describes the application of a coupled finite element-boundary element method (FE-BEM) to obtain the steady-state response of a piezoelectric transducer. The particular structure considered is a PZT4 disc-typed projector. The projector is three-dimensionally simulated to transduce applied electric charge on axial surfaces of the piezoelectric disc to acoustic pressure in air or in water. The directivity pattern of the acoustic field formed from the projected sound pressure is also simulated. And the displacement of the disc caused by the externally applied electric charge is shown in temporal motion. The coupled FE-BE method is described in detail.

  • PDF

Study on Angular Rate Sensor using Sol-Gel PZT thin film (Sol-gel 압전체 박막을 이용한 각속도 센서에 대한 연구)

  • Lee, S. H.;R. Meada;M. Esashi
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.34-34
    • /
    • 2003
  • Piezoelectric or magnetostrictive materials, known as smart materials, have been researched widely for sensors or actuators in micro system technology. In our research, thick sol-gel lead zirconate titanate(Pb(Zr$\sub$1-x/Ti$\sub$x/)O$_3$) films were fabricated and their characteristics were investigated f3r angular rate sensor applications. The thickness of the PZT films is 1.5${\mu}$m, which is required by a vibration angular rate sensor for a good actuation and sensing. The remnant polarization of the PZT flms is 12.0 ${\mu}$C/$\textrm{cm}^2$. The electromechanical constants of PZT thin film showed the value of susceptance(B) of 4800${\mu}$ s at capacitance of 790pF. The PZT films were applied to the vibration angular rate sensor structure and the vibration of 1.78 ${\mu}$m in amplitude at the resonant frequency of 35.8㎑ was obtained by driving voltage of 5V$\sub$p-p/ of bulk piezoelectric materials with out of phase signal through voltage and inverting amplifier.

  • PDF

Analytical Estimation of Power Generation from Dynamic Structure With Piezoelectric Element (압전재료가 부착된 동적 구조물로부터 발생되는 전기력의 해석적인 평가)

  • Oh, Jae-Eung;Yoon, Ji-Hyeon;Sim, Hyoun-Jin;Lee, You-Yub
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.263-263
    • /
    • 2007
  • In the future, self-contained sensors and processing units will need on-board, renewable power supplies to be truly autonomous. One way of supplying such power is through energy harvesting, processes by which ambient forms of energy are converted into electricity. One energy harvesting technique involves converting kinetic energy, in the form of vibrations, into electrical energy through the use of piezoelectric materials. Researchers are currently investigating how piezoelectric materials can be used to harvest power. This study examines the use of auxiliary structures, consisting of a mechanical fixture and a lead zirconate/lead titanate (PZT) piezoelectric element, which can be attached to any boundary conditions vibrating beam of the any boundary conditions. Adjusting various boundary conditions of these structures can maximize the strain induced in the attached PZT element and improve power output.

  • PDF

Innovative cable force monitoring of stay cables using piezoelectric dynamic strain responses

  • Nguyen, Khac-Duy;Huynh, Thanh-Canh;Lee, Ji-Yong;Shin, Sung Woo;Kim, Jeong-Tae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.830-834
    • /
    • 2013
  • This study presents a method to monitor cable force of a long-span cable-stayed bridge using a smart piezoelectric sensor system. The following approaches are implemented in order to achieve the objective. Firstly, the method to utilize piezoelectric materials for the health monitoring of stay cables is presented. For strain measurement of a stay cable, a PZT-embedded smart skin is designed to overcome the difficulties of bonding PZT sensors directly on stay cables. Secondly, a piezoelectric strain monitoring system for stay cables is designed. For the operation of the sensor board, the Imote2 sensor platform is used to provide the computation, wireless communication and power supply units. The feasibility of the proposed monitoring system is then evaluated on a full-scale cable of a cable-stayed bridge.

  • PDF