• Title/Summary/Keyword: Piezoelectric Elements

Search Result 170, Processing Time 0.028 seconds

Design and Fabrication of a Convex Array Ultrasonic Transducer with Finite Element Analysis (유한요소 해석법을 이용한 컨벡스 배열형 초음파 탐촉자의 설계 및 제작)

  • Lee, Su-Sung;Kwon, Jae-Hwa;Eun, Hong;Roh, Yong-Rae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.21 no.7
    • /
    • pp.592-599
    • /
    • 2002
  • In this study, an ultrasonic transducer was designed with a commercial finite element analysis (FEA) code, PZFlex, and fabricated based on the design. The transducer has the dimension and shape suitable for abdomen diagnosis working at 5 ㎒ and consists of 128 piezoelectric elements disposed in a convex linear array form. The transducer is composed of two impedance matching layers, one backing layer, and kerfs placed between the piezoelectric elements. Validity of the design with the FEA was illustrated through experimental characterization of a sample transducer. Comparison with the design results by equivalent circuit analysis method was also made to check the superiority of the FEA design.

Vibration analysis of characteristics and valveless Type Piezoelectric micro-pump (VALVELSS 압전펌프 진동 해석 및 특성)

  • Lim, Jong-Nam;Oh, Jin-Heon;Lim, Kee-Joe;Kim, Hyun-Hoo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.185-185
    • /
    • 2009
  • Micropump is very useful component in micro/nano fluidics and bioMEMS applications. Using the flexural vibration mode of PZT bar, a piezopump is successfully made. The PZT bar is polarized with thickness direction. The proposed structure for the piezo-pump consists of an input and an output port, piezoelectric ceramic actuator, actuator support, diaphragm. The traveling flexural wave along the bar is obtained by dividing two standing waves which are temporally and spatially phase shifted by 90 degrees from each other. Fluid is drawn into a forming chamber, eventually the forming chamber closes trapping the fluid therein. The finite elements analysis on the proposed pump model is carried out to verify its operation principle and design by the commercial FEM software. Components of piezopump were made, assembled, and tested to validate the concepts of the proposed pump and confirm the simulation results. The performance of the proposed piezopump the highest pressure level of 83.4kHz.

  • PDF

Large-scale Simulation for Optimal Design of Composite Curved Piezoelectric Actuator (복합재료 곡면형 자동기의 최적설계를 위한 대규모 수치해석 연구)

  • Chung, Soon-Wan;Hwang, In-Seong;Kim, Seung-Jo
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.04a
    • /
    • pp.5-8
    • /
    • 2005
  • In this paper, the electromechanical displacements of curved piezoelectric actuators composed of PZT ceramic and laminated composite materials are calculated based on high performance computing technology and the optimal configuration of composite curved actuator is examined. To accurately predict the local pre-stress in the device due to the mismatch in coefficients of thermal expansion, carbon-epoxy and glass-epoxy as well as PZT ceramic are numerically modeled by using hexahedral solid elements. Because the modeling of these thin layers increases the number of degrees of freedom, large-scale structural analyses are performed through the PEGASUS supercomputer, which is installed in our laboratory. In the first stage, the curved shape of the actuator and the internal stress in each layer are obtained by the cured curvature analysis. Subsequently, the displacement due to the piezoelectric force (which is resulted from applied voltage) is also calculated. The performance of composite curved actuator is investigated by comparing the displacements obtained by the variation of thickness and elastic modulus of laminated composite layers. In order to consider the finite deformation in the first analysis stage and include the pre-stress due to curing process in the second stage, nonlinear finite element analyses are carried out.

  • PDF

An Improved Calculation Model for Analysis of [111] InGaAs/GaAs Strained Piezoelectric Superlattices

  • Kim, Byoung-Whi;Yoo, Jae-Hoon;Kim, Soo-Hyung
    • ETRI Journal
    • /
    • v.21 no.4
    • /
    • pp.65-82
    • /
    • 1999
  • We present a calculation model for an improved quantitative theoretical analysis of electronic and optical properties of strained-piezoelectric[111] InGaAs/GaAs superlattices (SLs). The model includes a full band-coupling between the four important energy bands: conduction, heavy, light, and spin split-off valence bands. The interactions between these and higher lying bands are treated by the k ${\cdot}$ p perturbation method. The model takes into account the differences in the band and strain parameters of constituent materials of the heterostructures by transforming it into an SL potential in the larger band-gap material region. It self-consistently solves an $8{\times}8$ effective-mass $Schr{\ddot{o}}dinger$ equation and the Hartree and exchange-correlation potential equations through the variational procedure proposed recently by the present first author and applied to calculate optical matrix elements and spontaneous emission rates. The model can be used to further elucidate the recent theoretical results and experimental observations of interesting properties of this type of quantum well and SL structures, including screening of piezoelectric field and its resultant optical nonlinearities for use in optoelectronic devices.

  • PDF

Controller Design of Piezoelectric Milliactuator for Dual Stage System (이중 구동 시스템을 위한 압전 밀리엑츄에이터의 제어기 설계)

  • Hong, Eo-Jin;Yoon, Joon-Hyun;Park, No-Cheal;Yang, Hyun-Seok;Park, Young-Pil
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11a
    • /
    • pp.46-51
    • /
    • 2001
  • To reach high areal density, less track pitch is expected and more servo bandwidth is required. One approach to overcoming the problem is by using dual stage servo system. In this system, a voice coil motor (VCM) is used as the primary stage while a milliactuator is used as the secondary stage. We have suggested new milliactuator based on the shear mode of piezoelectric elements to drive the head suspension assembly. In this paper, we introduce controller design method, PQ method. PQ method reduces the controller design problem for DISO(dual-input/single-output) systems to two standard controller design problems for SISO(single-input/single-output) problems. The first part of PQ method directly address the issue of actuator output contribution, and the second part allows the use of traditional loop shaping to achieve the overall system performance. This paper shows how to employ the PQ method to meet aggressive close-loop performance specifications for a disk drive system with a VCM and piezoelectric milliactuator.

  • PDF

The analysis of the resonance characteristics of a traveling wave type ultrasonic motor by applying the normal force and driving voltage (진행파 회전형 초음파 모터의 가압력과 구동전압에 따른 공진특성의 변화 분석)

  • Oh, Jin-Heon;Park, Cheol-Hyeon;Lim, Kee-Joe;Kim, Hyeon-Hoo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.06a
    • /
    • pp.324-324
    • /
    • 2008
  • Piezoelectric ceramics is an active element that makes stator to vibrate to generate rotational force in ultrasonic motors. In drive of ultrasonic motors, many factors that affect to the resonance characteristics of piezoelectric ceramics exist. For example, those factors are bonding condition with elastic body, the magnitude of electric field, the normal force for frictional drive and the emission of heat due to vibration and friction and so on. Therefore, it is important to research the inclination of property variation of piezoelectric ceramics in circumstance that has complex elements. In this paper, we focused and analyzed the resonance characteristics of ultrasonic motor due to the magnitude of the driving voltage and normal force.

  • PDF

Design and Evaluation of Piezoelectric Ultrasonic Scaler Produced by a Simulation (시뮬레이션을 통한 압전형 초음파 스케일러 개발 및 평가)

  • Kim, Chul-Min;Lee, Young-Jin;Paik, Jong-Hoo;Jeong, Young-Hun;Kang, Kook-Jin;Lee, Jeong-Bae;Lee, Seung-Dae
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.10
    • /
    • pp.832-836
    • /
    • 2009
  • A piezoelectric ultrasonic scaler, usually used to remove the tartar out of teeth and to amputate the pubis, is a recently popular instrument for dental treatment due to its several merits such as small size, low-electric power, precision and low-cost. It has typically two parts of a tip and vibration system, which is also composed of head, piezoelectric elements and tail-mass. The scaler concentrates its displacement on tip and has commonly a resonance frequency at 25~30 kHz, and in order to improve the performance of the scaler, it is important to standardize the size of the vibration system without tip for high performance because scaler in quality differs according to several tips. In this study, a Finite Element Analysis (FEA) was utilized to optimize the structure of ultrasonic scaler in the vibration system. Consequently, this study revealed that influence of several tips on property were minimized and scaler showed good property at the resonance frequency of 28 kHz.

Enhancement of Density and Piezoelectric Properties of 0.96(K0.456Na0.536)Nb0.95Sb0.05-0.04Bi0.5(Na0.82K0.18)0.5ZrO3 Lead-Free Piezoelectric Ceramics through Two-Step Sintering Method (Two-Step 소결법을 통한 0.96(K0.456Na0.536)Nb0.95Sb0.05-0.04Bi0.5(Na0.82K0.18)0.5ZrO3 무연 압전 세라믹의 밀도 및 압전 특성 향상)

  • Il-Ryeol Yoo;Sang-Hyun Park;Seong-Hui Choi;Kyung-Hoon Cho
    • Korean Journal of Materials Research
    • /
    • v.34 no.2
    • /
    • pp.116-124
    • /
    • 2024
  • In this study, we investigated the microstructure and piezoelectric properties of 0.96(K0.456Na0.536)Nb0.95Sb0.05-0.04Bi0.5(Na0.82K0.18)0.5ZrO3 (KNNS-BNKZ) ceramics based on one-step and two-step sintering processes. One-step sintering led to significant abnormal grain (AG) growth at temperatures above 1,085 ℃. With increasing sintering temperature, piezoelectric and dielectric properties were enhanced, resulting in a high d33 = 506 pC/N for one-step specimen sintered at 1,100 ℃ (one-step 1,100 ℃ specimen). However, for one-step 1,115 ℃ specimen, a slight decrease in d33 was observed, emphasizing the importance of a high tetragonal (T) phase fraction for superior piezoelectric properties. Achieving a relative density above 84 % for samples sintered by the one-step sintering process was challenging. Conversely, two-step sintering significantly improved the relative density of KNNS-BNKZ ceramics up to 96 %, attributed to the control of AG nucleation in the first step and grain growth rate control in the second step. The quantity of AG nucleation was affected by the duration of the first step, determining the final microstructure. Despite having a lower T phase fraction than that of the one-step 1,100 ℃ specimen, the two-step specimen exhibited higher piezoelectric coefficients (d33 = 574 pC/N and kp = 0.5) than those of the one-step 1,100 ℃ specimen due to its higher relative density. Performance evaluation of magnetoelectric composite devices composed of one-step and two-step specimens showed that despite having a higher g33, the magnetoelectric composite with the one-step 1,100 ℃ specimen exhibited the lowest magnetoelectric voltage coefficient, due to its lowest kp. This study highlights the essential role of phase fraction and relative density in enhancing the performance of piezoelectric materials and devices, showcasing the effectiveness of the two-step sintering process for controlling the microstructure of ceramic materials containing volatile elements.

Experimental study on directivity of the elastic wave using bender elements (벤더엘리먼트에서 발생하는 탄성파의 방향성에 대한 실험적 연구)

  • Choi, Jong-Youn;Kim, Hyun-Ki;Cho, Nam-Jun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.705-710
    • /
    • 2010
  • Bender element is made of connecting two piezoelectric elements which have different polarities from each other, and is a kind of sensors which can be used either way as a source making elastic wave or a receiver. Elastic waves generated by stimulating the bender elements can be decomposed to P-wave and S-wave propagation. Numerical and expeimental studies are conducted, and results show that multiple measurements are recommended to determine wave arrivals from the received signals.

  • PDF

Wave Characteristics in the PZT-bonded Composite Beams (PZT층을 갖는 복합재 보의 파동 특성)

  • Kim, Dae-Hwan;Lee, U-Sik
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.2632-2634
    • /
    • 2011
  • In the Structural Health Monitoring field, the piezoelectric elements are bonded the surface of the structures for generating the guided wave. For this reason, the structures become two-layer beam. It is very important to know precisely the dynamic characteristic of structures and also predict precisely the wave propagation in structures. Because wave propagation is very useful to analysis the dynamic characteristic of structures. In this paper, the governing equations of motion are derived from Hamilton's principle by applying the Timoshenko beam theory and Mindlin-Herrmann rod theory at the first. and then the wave propagations in a composite beams with a surface-bonded piezoelectric are examined.

  • PDF