• Title/Summary/Keyword: Piezoelectric$Bi_2O_3$

Search Result 98, Processing Time 0.028 seconds

Effect of Calcination Temperature on the Piezoelectric Characteristics of Low Temperature Sintering PMN-PZN-PZT ceramics (하소온도가 저온소결 PMN-PZN-PZT 세라믹스의 압전특성에 미치는 영향)

  • Lee, Il-Ha;Lee, Sang-Ho;Yoo, Ju-Hyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.214-216
    • /
    • 2006
  • In this study, in order to develop the composition ceramics for low loss and low temperature sintering multilayer piezoelectric actuator, PMN-PZN-PZT ceramics were fabricated using two stage calcination method and $Li_2CO_3$, $Bi_2O_3$ and CuO as sintering aids and their piezoelectric characteristics were investigated according to the 2nd calcination and sintering temperature. At the calcination temperature of $750^{\circ}C$ and sintering temperature of $930^{\circ}C$, density, electromechanical coupling factor ($k_p$), mechanical quality factor ($Q_m$), Dielectric constant (${\varepsilon}_r$) and piezoelectric constant ($d_{33}$) of specimen showed the optimum value of $7.94g/cm^2$ 0.581, 1554, 1555 and 356pC/N, respectively for multilayer piezoelectric actuator application.

  • PDF

Dielectric and Piezoelectric Properties of Nonstoichiometric Sr1±xBi2±yTa2O9 and Sr1±xBi2±yNb2O9 Ceramics (비화학양론 Sr1±xBi2±yTa2O9 과 Sr1±xBi2±yNb2O9 세라믹의 유전 및 압전 특성)

  • Cho, J.A.;Park, S.E.;Song, T.K.;Kim, M.H.;Lee, H.S.
    • Korean Journal of Materials Research
    • /
    • v.13 no.6
    • /
    • pp.360-364
    • /
    • 2003
  • $Sr_{l}$ $\pm$x/$Bi_{2}$ $\pm$y/$Ta_2$ $O_{9}$ and $Sr_{l}$ $\pm$$Bi_{x}$ $2\pm$y$Nb_2$$O_{9}$ ceramics were prepared by a solid state reaction method. X-ray diffraction analysis indicated that single-phase of Bi-layered perovskite was obtained. According to Sr/Bi content ratio, Curie temperature( $T_{c}$), electromechanical factor($K_{p}$ ) and mechanical quality factor($Q_{m}$ ) were measured. The Curie temperature of SBN(SBT) rose from $414^{\circ}C$(314$^{\circ}C$) to $494^{\circ}C$(426$^{\circ}C$) when Sr/Bi content ratio was increased. In the case of Sr/Bi content ratio = 0.55/2.3, the maximum value of the mechanical quality factor $Q_{m}$ of SBT and SBN were obtained 3320 and 1010, respectively.

Enhancement of Density and Piezoelectric Properties of 0.96(K0.456Na0.536)Nb0.95Sb0.05-0.04Bi0.5(Na0.82K0.18)0.5ZrO3 Lead-Free Piezoelectric Ceramics through Two-Step Sintering Method (Two-Step 소결법을 통한 0.96(K0.456Na0.536)Nb0.95Sb0.05-0.04Bi0.5(Na0.82K0.18)0.5ZrO3 무연 압전 세라믹의 밀도 및 압전 특성 향상)

  • Il-Ryeol Yoo;Sang-Hyun Park;Seong-Hui Choi;Kyung-Hoon Cho
    • Korean Journal of Materials Research
    • /
    • v.34 no.2
    • /
    • pp.116-124
    • /
    • 2024
  • In this study, we investigated the microstructure and piezoelectric properties of 0.96(K0.456Na0.536)Nb0.95Sb0.05-0.04Bi0.5(Na0.82K0.18)0.5ZrO3 (KNNS-BNKZ) ceramics based on one-step and two-step sintering processes. One-step sintering led to significant abnormal grain (AG) growth at temperatures above 1,085 ℃. With increasing sintering temperature, piezoelectric and dielectric properties were enhanced, resulting in a high d33 = 506 pC/N for one-step specimen sintered at 1,100 ℃ (one-step 1,100 ℃ specimen). However, for one-step 1,115 ℃ specimen, a slight decrease in d33 was observed, emphasizing the importance of a high tetragonal (T) phase fraction for superior piezoelectric properties. Achieving a relative density above 84 % for samples sintered by the one-step sintering process was challenging. Conversely, two-step sintering significantly improved the relative density of KNNS-BNKZ ceramics up to 96 %, attributed to the control of AG nucleation in the first step and grain growth rate control in the second step. The quantity of AG nucleation was affected by the duration of the first step, determining the final microstructure. Despite having a lower T phase fraction than that of the one-step 1,100 ℃ specimen, the two-step specimen exhibited higher piezoelectric coefficients (d33 = 574 pC/N and kp = 0.5) than those of the one-step 1,100 ℃ specimen due to its higher relative density. Performance evaluation of magnetoelectric composite devices composed of one-step and two-step specimens showed that despite having a higher g33, the magnetoelectric composite with the one-step 1,100 ℃ specimen exhibited the lowest magnetoelectric voltage coefficient, due to its lowest kp. This study highlights the essential role of phase fraction and relative density in enhancing the performance of piezoelectric materials and devices, showcasing the effectiveness of the two-step sintering process for controlling the microstructure of ceramic materials containing volatile elements.

Effect of Sintering Temperature on the Dielectric and Piezoelectric Properties of (Na,K,Li)(Nb,Sb,Ta)O3 Ceramics (소성 온도가 (Na,K,Li)(Nb,Sb,Ta)O3 세라믹스의 유전 및 압전 특성에 미치는 영향)

  • Kim, You-Seok;Yoo, Ju-Hyun;Hong, Jae-Il;Lee, Jie-Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.11
    • /
    • pp.806-809
    • /
    • 2013
  • In this study, $(Na_{0.525}K_{0.443}Li_{0.037})(Nb_{0.883}Sb_{0.08}Ta_{0.037})O_3+0.10\;wt%Bi_2O_3+0.35\;wt%B_2O_3$ ceramics were prepared by conventional soild-state sintering process. The specimens were sintered at temperature range from $1,060^{\circ}C$ to $1,100^{\circ}C$. XRD (X-ray diffractron), SEM (scanning electron microscope) were used to analyze the crystal structure and microstructural sproperties of specimens. And also, $T_{O-T}$, TC were observed by the mesurement of temperature dependence of dielectric constant. Excellect physical properties of the piezoelectric constant $d_{33}$= 170 pC/N, electromechanical coupling factor kp= 0.312, Tc= $315^{\circ}C$ were obtained, respectively, from the specimen sintered at $1,080^{\circ}C$.

Dielectric and Piezoelectric Properties of Low Temperature Sintering PCW-PMN-PZT Ceramics according to MnO2 Addition (MnO2 첨가에 따른 저온소결 PCW-PMN-PZT세라믹스의 유전 및 압전특성)

  • Chung, Kwang-Hyun;Lee, Duck-Chool;Lee, Chang-Bae;Lee, Sang-Ho;Yoo, Ju-Hyun;Lee, Hyeung-Gyu;Kang, Hyung-Won
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.18 no.2
    • /
    • pp.136-141
    • /
    • 2005
  • In this study, in order to develop the low temperature sintering ceramics for multilayer piezoelectric transformer, PCW-PMN-PZT ceramics using Li$_2$CO$_3$, Bi$_2$O$_3$, and CuO as sintering aids were manufactured according to the amount of MnO$_2$ addition. Their microstructural, dielectric and piezoelectric properties were investigated. When the sintering aids were added, specimens could be sintered below 95$0^{\circ}C$, but mechanical qualify factor decreased. Therefore, MnO$_2$ was added excessively to the PCW-PMN-PZT ceramics to increase mechanical quality factor. At the sintering temperature of 95$0^{\circ}C$, the density, dielectric constant($\varepsilon$$_{r}$), electromechanical coupling factor(k$_{p}$), mechanical quality factor(Q$_{m}$) and Curie temperature(T$_{c}$) of 0.1 wt% MnO$_2$ added specimen showed the optimal values of 7.75 g/㎤, 1503, 0.57, 1502, and 337, respectively, for multilayer piezoelectric transformer application.ation.n.

Piezoelectric and Dielectric Properties of Low Temperature Sintering PMN-PZN-PZT Ceramics according to the Milling Time (밀링 시간에 따른 저온소결 PMN-PZN-PZT 세라믹스의 압전 및 유전특성)

  • Yoo, Ju-Hyun;Lee, Il-Ha;Lee, Kab-Soo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.12
    • /
    • pp.1039-1043
    • /
    • 2007
  • In this paper, in order to develop low temperature sintering ceramics for multilayer piezoelectric actuator application, PMN-PZN-PZT ceramics were fabricated using $LiCO_3,\;Bi_2O_3$ and CuO as sintering aids. And also, their piezoelectric and dielectric properties were investigated according to the milling time. All the specimens sintered at $930\;^{\circ}C$ showed tetragonal phases without secondary phases. With increasing milling time, piezoelectric and dielectric characteristic of specimens increased up to 60 hours milling time and then decreased due to the agglomeration of fine particle. Accordingly, it seems that 60 hour is optimum milling condition. At the sintering temperature of $930\;^{\circ}C$ and milling time of 60 hour, density, dielectric constant(${\varepsilon}_r$), electromechanical coupling factor (kp), mechanical quality factor (Qm), piezoelectric d constant showed the optimum value of $7.95\;g/m^3$, 1382, 0.546, 1749, 330 pC/N, respectively for multilayer piezoelectric actuator application.

Enhanced Piezoelectric Properties of Lead-Free La and Nb Co-Modified Bi0.5(Na0.84K0.16)0.5TiO3-SrTiO3 Ceramics

  • Malik, Rizwan Ahmed;Hussain, Ali;Maqbool, Adnan;Zaman, Arif;Song, Tae Kwon;Kim, Won Jeong;Kim, Myong Ho
    • Korean Journal of Materials Research
    • /
    • v.25 no.6
    • /
    • pp.288-292
    • /
    • 2015
  • New lead-free piezoelectric ceramics $0.96[\{Bi_{0.5}(Na_{0.84}K_{0.16})_{0.5}\}_{1-x}La_x(Ti_{1-y}Nb_y)O_3]-0.04SrTiO_3$ (BNKT-ST-LN, where $x=y=0.00{\leq}(x=y){\leq}0.015)$ were synthesized using the conventional solid-state reaction method. Their crystal structure, microstructure, and electrical properties were investigated as a function of the La and Nb (LN) content. The X-ray diffraction patterns revealed the formation of a single-phase perovskite structure for all the LN-modified BNKT-ST ceramics in this study. The temperature dependence of the dielectric curves showed that the maximum dielectric constant temperature ($T_m$) shifted towards lower temperatures and the curves became more diffuse with an increasing LN content. At the optimum composition (LN 0.005), a maximum value of remnant polarization ($33C/cm^2$) with a relatively low coercive field (22 kV/cm) and high piezoelectric constant (215 pC/N) was observed. These results indicate that the LN co-modified BNKT-ST ceramic system is a promising candidate for lead-free piezoelectric materials.

Effects of La2O3 Doping on Phase Transition Behavior and Electromechanical Strain Properties in Bismuth-Based Lead-Free Piezoelectric Ceramics (비스무스계 무연 압전 세라믹스의 상전이 거동 및 전기 기계적 변형 특성에 대한 La2O3 도핑 효과 연구)

  • Eun Seo Kang;Sung Jae Hyoung;Yubin Kang;Min Sung Park;Trang An Duong;Jae-Shin Lee;Hyoung-Su Han
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.4
    • /
    • pp.457-463
    • /
    • 2024
  • (Bi1/2Na1/2)TiO3(BNT) piezoelectric ceramics are one of the promising materials that can replace Pb(Zr, Ti)O3(PZT) piezoelectric ceramics due to the high electromechanical strain properties. However, it is still difficult to use practical applications because the required electric field for inducing electromechanical strain is relatively higher than that of PZT ceramics. To overcome this problem, it has been intensively studied on doping impurity or modifying other ABO3 for BNT-based piezoelectric ceramics. Therefore, this study investigated the effects of La2O3 doping on the phase transition behavior and electromechanical strain properties in BNT-SrTiO3 (BNT-ST) lead-free piezoelectric ceramics. In the case of the temperature-dependent dielectric properties, it was confirmed that a phase transition from ferroelectrics to relaxors is induced with increasing La2O3 content. As a result, the electromechanical strain properties of BNT-ST ceramics were improved. The highest Smax/Emax value corresponding to 300 pm/V was obtained at 2 mol% La2O3-dopped BNT-ST ceramics. Accordingly, this study successfully demonstrated that La2O3 doping is effective on the inducing phase transition from ferroelectrics to relaxors and the improving electromechanical strain properties of BNT-ST lead-free piezoelectric ceramics.

Physical Properties of PNN-PMN-PZT Doped with Zinc Oxide and CLBO for Ultrasonic Transducer

  • Yoo, Juhyun;Kim, Tahee;Lee, Eunsup;Choi, Nak-Gu;Jeong, Hoy-Seung
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.6
    • /
    • pp.334-337
    • /
    • 2017
  • In this paper, to develop the ceramics with high $d_{33}$ and high $Q_m$ for ultrasonic transducer applications, $0.10Pb(Ni_{1/3}Nb_{2/3})O_3-0.07Pb(Mn_{1/3}Nb_{2/3})O_3-0.83Pb(Zr_{0.5}Ti_{0.5})_{0.83}O_3$ (PNN-PMN-PZT) ceramics were sintered at $940^{\circ}C$ using $CuO-Li_2CO_3-Bi_2O_3$ (CLBO) as a sintering aid by a traditional solid-state technique. The influence of zinc oxide additive on the physical properties of the prepared ceramics were systematically investigated. The R-T (rhombohedral-tetragonal) phase coexistence was found in the ceramics without zinc oxide additive and with increasing amounts of ZnO additive, the specimens showed a tetragonal phase. The formation of a liquid phase between ZnO and $Bi_2O_3$ contributed significantly to the grain growth of specimens. For the 0.1 wt% ZnO ceramics, the optimal physical properties of $d_{33}=370pC/N$, ${\varepsilon}_r=1,344$, $k_p=0.621$, and $Q_m=1,523$ were obtained.