DOI QR코드

DOI QR Code

Effects of La2O3 Doping on Phase Transition Behavior and Electromechanical Strain Properties in Bismuth-Based Lead-Free Piezoelectric Ceramics

비스무스계 무연 압전 세라믹스의 상전이 거동 및 전기 기계적 변형 특성에 대한 La2O3 도핑 효과 연구

  • Eun Seo Kang (School of Materials Science and Engineering, University of Ulsan) ;
  • Sung Jae Hyoung (School of Materials Science and Engineering, University of Ulsan) ;
  • Yubin Kang (School of Materials Science and Engineering, University of Ulsan) ;
  • Min Sung Park (School of Materials Science and Engineering, University of Ulsan) ;
  • Trang An Duong (School of Materials Science and Engineering, University of Ulsan) ;
  • Jae-Shin Lee (School of Materials Science and Engineering, University of Ulsan) ;
  • Hyoung-Su Han (School of Materials Science and Engineering, University of Ulsan)
  • 강은서 (울산대학교 첨단소재공학부) ;
  • 형성재 (울산대학교 첨단소재공학부) ;
  • 강유빈 (울산대학교 첨단소재공학부) ;
  • 박민성 (울산대학교 첨단소재공학부) ;
  • 즈엉 짱 안 (울산대학교 첨단소재공학부) ;
  • 이재신 (울산대학교 첨단소재공학부) ;
  • 한형수 (울산대학교 첨단소재공학부)
  • Received : 2024.05.01
  • Accepted : 2024.05.17
  • Published : 2024.07.01

Abstract

(Bi1/2Na1/2)TiO3(BNT) piezoelectric ceramics are one of the promising materials that can replace Pb(Zr, Ti)O3(PZT) piezoelectric ceramics due to the high electromechanical strain properties. However, it is still difficult to use practical applications because the required electric field for inducing electromechanical strain is relatively higher than that of PZT ceramics. To overcome this problem, it has been intensively studied on doping impurity or modifying other ABO3 for BNT-based piezoelectric ceramics. Therefore, this study investigated the effects of La2O3 doping on the phase transition behavior and electromechanical strain properties in BNT-SrTiO3 (BNT-ST) lead-free piezoelectric ceramics. In the case of the temperature-dependent dielectric properties, it was confirmed that a phase transition from ferroelectrics to relaxors is induced with increasing La2O3 content. As a result, the electromechanical strain properties of BNT-ST ceramics were improved. The highest Smax/Emax value corresponding to 300 pm/V was obtained at 2 mol% La2O3-dopped BNT-ST ceramics. Accordingly, this study successfully demonstrated that La2O3 doping is effective on the inducing phase transition from ferroelectrics to relaxors and the improving electromechanical strain properties of BNT-ST lead-free piezoelectric ceramics.

Keywords

Acknowledgement

본 연구는 한국수력원자력(주)과 지방자치단체(울산광역시)의 지원으로 수행된 연구임 (2023).

References

  1. J. Koruza, A. J. Bell, T. Fromling, K. G. Webber, K. Wang, and J. Rodel, J. Materiomics, 4, 13 (2018). doi: https://doi.org/10.1016/j.jmat.2018.02.001
  2. D. Damjanovic, N. Klein, J. Li, and V. Porokhonskyy, Funct. Mater. Lett., 3, 5 (2010).  doi: https://doi.org/10.1142/S1793604710000919 
  3. M. S. Collin, S. K. Venkatraman, N. Vijayakumar, V. Kanimozhi, S. M. Arbaaz, R.G.S. Stacey, J. Anusha, R. Choudhary, V. Lvov, G. I. Tovar, F. Senatov, S. Koppala, and S. Swamiappan, J. Hazard. Mater., 7, 100094 (2022).  doi: https://doi.org/10.1016/j.hazadv.2022.100094 
  4. A. J. Bell and O. Deubzer, MRS Bull., 43, 581 (2018).  doi: https://doi.org/10.1557/mrs.2018.154 
  5. T. G. Song and M. H. Lee, Ceramist, 17, 32 (2014).
  6. S. L. Ryu, K. H. Chung, J. H. Yoo, B. Y. Lee, and Y. H. Jeong, J. Korean Inst. Electr. Electron. Mater. Eng., 18, 821 (2005).  doi: https://doi.org/10.4313/JKEM.2005.18.9.821 
  7. H. Wei, H. Wang, Y. Xia, D. Cui, Y. Shi, M. Dong, C. Liu, T. Ding, J. Zhang, Y. Ma, N. Wang, Z. Wang, Y. Sun, R. Wei, and Z. Guo, J. Mater. Chem. C, 6, 12446 (2018).  doi: https://doi.org/10.1039/C8TC04515A 
  8. J. Wu, J. Appl. Phys., 127, 190901 (2020).  doi: https://doi.org/10.1063/5.0006261 
  9. P. K. Panda, B. Sahoo, T. S. Thejas, and M. Krishna, J. Electron. Mater., 51, 938 (2022).  doi: https://doi.org/10.1007/s11664-021-09346-0 
  10. T. Zheng, J. Wu, D. Xiao, and J Zhu, Prog. Mater. Sci., 98, 552 (2018).  doi: https://doi.org/10.1016/j.pmatsci.2018.06.002 
  11. T. G. Lee and S. Nahm, Trans. Electr. Electron. Mater., 20, 385 (2019).  doi: https://doi.org/10.1007/s42341-019-00134-6 
  12. P. Naik, A. Nayak, and S. K. Patri, Trans. Electr. Electron. Mater., 24, 149 (2022).  doi: https://doi.org/10.1007/s42341-022-00425-5 
  13. J. Y. Park, T. A. Duong, S. S. Lee, C. W. Ahn, B. W. Kim, H. S. Han, and J. S. Lee, J. Korean Inst. Electr. Electron. Mater. Eng., 36, 513 (2023).  doi: https://doi.org/10.4313/JKEM.2023.36.5.12 
  14. W. Krauss, D. Schutz, F. A. Mautner, A. Feteira, and K. Reichmann. J. Eur. Ceram. Soc., 30, 1827 (2010).  doi: https://doi.org/10.1016/j.jeurceramsoc.2010.02.001 
  15. M. Y. Lee, S. L. Ryu, J. H. Yoo, K. H. Chung, Y. H. Jeong, J. I. Hong, and H. S. Yoon, J. Korean Inst. Electr. Electron. Mater. Eng., 17, 1056 (2004).  doi: https://doi.org/10.4313/JKEM.2004.17.10.1056 
  16. A. Ayrikyan, O. Prach, N. H. Khansur, S. Keller, S. Yasui, M. Itoh, O. Sakata, K. Durst, and K. G. Webber, Acta Mater., 148, 432 (2018).  doi: https://doi.org/10.1016/j.actamat.2018.02.014 
  17. D. S. Lee, D. H. Lim, M. S. Kim, K. H. Kim, and S. J. Jeong, Appl. Phys. Lett., 99, 062906 (2011).  doi: https://doi.org/10.1063/1.3621878 
  18. S. Halder, S. Bhuyan, and R.N.P. Choudhary, Trans. Electr. Electron. Mater., 20, 24 (2019).  doi: https://doi.org/10.1007/s42341-018-0076-y 
  19. J. S. Park, K. T. Lee, J. H. Cho, Y. H. Jeong, J. H. Paik, and J. S. Yun, J. Korean Ceram. Soc., 51, 527 (2014).  doi: https://doi.org/10.4191/kcers.2014.51.6.527 
  20. Y. Kang, J. Y. Park, M. A. Devita, T. A. Duong, C. W. Ahn, B. W. Kim, H. S. Han, and J. S. Lee, J. Korean Inst. Electr. Electron. Mater. Eng., 35, 516 (2022).  doi: https://doi.org/10.4313/JKEM.2022.35.5.15 
  21. S. H. Lee, S. H. Kim, F. Erkinov, H.T.K. Nguyen, T. A. Duong, H. S. Han, and J. S. Lee, J. Korean Inst. Electr. Electron. Mater. Eng., 33, 37 (2020).  doi: https://doi.org/10.4313/JKEM.2020.33.1.37 
  22. M. Li, Q. Li, B. Yan, A. K. Yadav, H. Wang, G. Dong, and H. Fan, Ceram. Int., 47, 1325 (2021).  doi: https://doi.org/10.1016/j.ceramint.2020.08.254 
  23. T. H. Dinh, H. Y. Lee, C. H. Yoon, R. A. Malik, Y. M. Kong, and J. S. Lee, J. Korean Phys. Soc., 62, 1004 (2013).  doi: https://doi.org/10.3938/jkps.62.1004 
  24. R. F. Ge, Z. H. Zhao, S. F. Duan, X. Y. Kang, Y. K. Lv, D. S. Yin, and Y. Dai, J. Alloys Compd., 724, 1000 (2017).  doi: https://doi.org/10.1016/j.jallcom.2017.07.086 
  25. S. S. Lee, C. H. Lee, T. A. Duong, D. H. Kim, B. W. Kim, H. S. Han, and J. S. Lee, Korean J. Mater. Res., 31, 562 (2021).  doi: https://doi.org/10.3740/MRSK.2021.31.10.562 
  26. T. A. Duong, H. S. Han, Y. H. Hong, Y. S. Park, H.T.K. Nguyen, T. H. Dinh, and J. S. Lee, J. Electroceram., 41, 73 (2018).  doi: https://doi.org/10.1007/s10832-018-0161-y 
  27. H. D. Li, C. D. Feng, and P. H. Xiang, Jpn. J. Appl. Phys., 42, 7387 (2003).  doi: https://doi.org/10.1143/JJAP.42.7387 
  28. X. Zhang, Y. Xiao, B. Du, Y. Li, Y. Wu, L. Sheng, and W. Tan, Materials, 14, 6666 (2021).  doi: https://doi.org/10.3390/ma14216666