• Title/Summary/Keyword: Piezoceramic Transducer

Search Result 25, Processing Time 0.02 seconds

An Analysis of the Acoustic Radiation Characteristics from the Acoustic Transducer (압전세라믹스를 이용한 음향트랜스듀서의 음향방사특성 해석)

  • 노현택;고영준;박재성;남효덕;장호경
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.703-706
    • /
    • 2000
  • The acoustic characteristics radiated from the acoustic transducer with metal-piezoceramic laminated circular plate were simulated. The Vibrational modes of metal-piezoceramic laminated circular plates were calculated by using the finite element method. After meshing the inside closed boundary of the acoustic transducer, the pressure gradients and the isotaric lines were calculated for the various frequencies. It has been observed that the characteristics of the sound pressure calculated for the various frequencies. Also, the directivity patterns and the sound pressure radiated from the acoustic transducer were calculated by 2-dimensional analysis.

  • PDF

Frequency Response Characteristics by Using Tone-Burst Method for Piezoelectric Ceramic Transducer (압전 세라믹 트랜스듀서의 Tone-Burst법에 의한 주파수 응답특성)

  • Bae, Hyo-Yoon;SaGong, Geon
    • Proceedings of the KIEE Conference
    • /
    • 1988.07a
    • /
    • pp.806-809
    • /
    • 1988
  • The frequency response characteristics of a bimorph type PZT piezoelectric transducer was investigated. In this study, function generator which generates short burst signal, plane reflection plate and oscilloscope were used to measure the characteristics of piezoceramic ultrasonic transducer. The resonant frequency of a bimorph type piezoceramic transducer which is acquired by using Tone-Burst Method had good agreement with the measured results from spectrum analyzer.

  • PDF

Development of smart transducer with embedded sensor for automatic process control of ultrasonic wire bonding

  • Or, Siu Wing;Chan, Helen Lai Wa;Liu, Peter Chou Kee
    • Smart Structures and Systems
    • /
    • v.1 no.1
    • /
    • pp.47-61
    • /
    • 2005
  • A ring-shaped lead zirconate titanate (PZT) piezoceramic sensor has been integrated with the Langevin-type piezoceramic driver of an ultrasonic wire-bonding transducer to form a smart transducer for in-situ measurement of three essential bonding parameters: namely, impact force, ultrasonic amplitude and bond time. This sensor has an inner diameter, an outer diameter and a thickness of 12.7 mm, 5.1 mm and 0.6 mm, respectively. It has a specifically designed electrode pattern on the two major surfaces perpendicular to its thickness along which polarization is induced. The process-test results have indicated that the sensor not only is sensitive to excessive impact forces exerted on the devices to be bonded but also can track changes in the ultrasonic amplitude proficiently during bonding. Good correlation between the sensor outputs and the bond quality has been established. This smart transducer has good potential to be used in automatic process-control systems for ultrasonic wire bonding.

Preparation of piezoceramic/polymer composite for ultrasonic transducer application (초음파 트랜스듀서 응용을 위한 세라믹/고분자 복합 압전체의 제작)

  • Park, J.H.;SaGong, G.
    • Proceedings of the KIEE Conference
    • /
    • 1993.11a
    • /
    • pp.219-221
    • /
    • 1993
  • In this study, piezoceramics/polymer composites with 3-3 connectivity were made by BURPS(Burnout Plastic Sphere) technique with PZT ceramics and plastic sphere. And the properties dependent on the Dextrin wt.% were investigated. The density of porous piezoceramic and piezoceramic/polymer composites were decreased almost linearly with increasing the Dextrin wt.%.

  • PDF

Structural health monitoring using piezoceramic transducers as strain gauges and acoustic emission sensors simultaneously

  • Huo, Linsheng;Li, Xu;Chen, Dongdong;Li, Hongnan
    • Computers and Concrete
    • /
    • v.20 no.5
    • /
    • pp.595-603
    • /
    • 2017
  • Piezoceramic transducers have been widely used in the health monitoring of civil structures. However, in most cases, they are used as sensors either to measure strain or receive stress waves. This paper proposes a method of using piezoelectric transducers as strain gauges and acoustic emission (AE) sensors simultaneously. The signals received by piezoceramic transducers are decomposed into different frequency components for various analysis purposes. The low-frequency signals are used to measure strain, whereas the high-frequency signals are used as acoustic emission signal associated with local damage. The b-value theory is used to process the AE signal in piezoceramic transducers. The proposed method was applied in the bending failure experiments of two reinforced concrete beams to verify its feasibility. The results showed that the extracted low-frequency signals from the piezoceramic transducers had good agreement with that from the strain gauge, and the processed high-frequency signal from piezoceramic transducers as AE could indicate the local damage to concrete. The experimental results verified the feasibly of structural health monitoring using piezoceramic transducers as strain gauges and AE sensors simultaneously, which can advance their application in civil engineering.

Design and Acoustic Properties of Acoustic Device with Metal-Piezoceramic Circular Plate (금속-압전세라믹스로 구성된 음향소자의 설계 및 음향특성)

  • Go Young-Jun;Lee Sang-Wook;Nam Hyo-Duk;Chang Ho-Gyeong
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • spring
    • /
    • pp.275-278
    • /
    • 2000
  • In this study, the acoustic transducer of a thin circular disc-type with PZT/Metal was designed. The dielectric and piezoelectric properties of $0.5wt\%$ $MnO_2$ and NiO doped 0.1Pb($Mg_{1/3}$$Nb_{2/3}$)$O_3$-$0.45PbTiO_3$-$0.45PbZrO_3$ ceramics were investigated aiming at acoustic transducer applications. The vibration characteristics for the laminated circular plate was analyzed for the various thickness and diameter of the piezoceramic layer and metal layer. The acoustic characteristics which is radiated from the acoustic transducer within the finite space was simulated using the finite element method. It has been observed that the characteristics of the sound pressure ard impedance response calculated for the various models of the size and geometry of acoustic transducer.

  • PDF

Fatigue Crack Detection Test of Weldments Using Piezoceramic Transducers

  • KIM MYUNG HYUN;KANG SUNG WON;KEUM CHUNG-YON
    • Journal of Ocean Engineering and Technology
    • /
    • v.19 no.4 s.65
    • /
    • pp.21-27
    • /
    • 2005
  • Large welded structures, including ships and offshore structures, are normally in operation under cyclic fatigue loadings. These structures include many geometric discontinuities, as well as material discontinuities due to weld joints. The fatigue strength at these hot spots is very important for the structural performance. In the past, various Non Destructive Evaluation (NDE) techniques have been developed to detect fatigue cracks and to estimate their location and size. However, an important limitation of most of the existing NDE methods is that they are off line; the normal operation of the structure has to be interrupted, and the device often has to be disassembled. This study explores the development of a structural health monitoring system, with a special interest in applying the technique to welded structural members in ship and offshore structures. In particular, the impedance based structural health monitoring technique that employs the coupling effect of piezoceramic (PZT) materials and structures is investigated.

Design and Acoustic Properties of Piezoelectric Device with the PMN-PT-PZ System (PMN-PT-PZ계를 이용한 압전소자의 설계 및 음향특성)

  • Go, Young-Jun;Seo, Hee-Don;Nam, Hyo-Duk;Chang, Ho-Gyeong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.05b
    • /
    • pp.283-286
    • /
    • 2000
  • In this study, the acoustic transducer of a thin circular disc-type with PZT/Metal was manufactured. The piezoelectric transducer with 200kHz resonance frequency was designed by considering the sharp directivity and the sound pressure. The dielectric and piezoelectric properties of 0.5 weight percent $MnO_2$ and NiO doped $0.1Pb(Mg_{1/3}Nb_{2/3})O_3-0.45PbTiO_3-0.42PbZrO_3$ ceramics were investigated aiming at acoustic transducer applications. Also, the acoustic characteristics of a thin circular disc-type with metal-piezoceramics have been Investigated.

  • PDF

Pulse-echo Response of Piezoceramic-Polymer 1-3 Type Composite Transducer for a Level Limit Switch Applications (Level Limit스위치용 1-3형 복합압전체 트랜스듀서의 펄스-에코응답특성)

  • Choi, H.I.;Sohn, M.H.;Kim, H.K.;Park, K.I.;SaGong, G.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05a
    • /
    • pp.224-228
    • /
    • 2002
  • In this study, the piezoelectric ceramics PZT powder was synthesized by the Wet-Dry combination method. Flexible 1-3 type composite specimens were fabricated with the piezoceramics PZT filler phase and Eccogel polymer matrix phase. This paper represents the pulse-echo response of the 1-3 type composite transducer to check it out to investigate a basic property regarding a level limit switch. The acoustic impedance of 1-3 type composite was improved than that of single phase PZT ceramics. The pulse-echo response of transducer fabricated with the self-made 1-3 type composites resonator was better than that of the solid PZT transducer.

  • PDF

Fabrication and Characterization of an Underwater Acoustic Tonpilz Vector Sensor for the Estimation of Sound Source Direction (음원의 방향 추정을 위한 수중 음향 Tonpilz 벡터 센서의 제작 및 특성 평가)

  • Lim, Youngsub;Roh, Yongrae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.34 no.5
    • /
    • pp.351-359
    • /
    • 2015
  • Typical underwater acoustic transducers detect only the magnitude of an acoustic pressure and they have the limitation of not being able to recognize the direction of the sound signal. Hence, the authors of this paper proposed a new vector sensor structure based on Tonpilz transducers that could detect both the magnitude and the direction of a sound pressure. In the proposed structure, the piezoceramic ring was divided into four segments, and proper combination of the output voltages of the segments in response to the external sound pressure could provide the information on the orientation of the sound source. In this paper, a Tonpilz transducer has been fabricated to have the proposed structure and its characteristics has been measured to confirm the validity of the proposed structure.