• Title/Summary/Keyword: Piezoceramic Sensor

Search Result 60, Processing Time 0.023 seconds

A low cost miniature PZT amplifier for wireless active structural health monitoring

  • Olmi, Claudio;Song, Gangbing;Shieh, Leang-San;Mo, Yi-Lung
    • Smart Structures and Systems
    • /
    • v.7 no.5
    • /
    • pp.365-378
    • /
    • 2011
  • Piezo-based active structural health monitoring (SHM) requires amplifiers specifically designed for capacitive loads. Moreover, with the increase in number of applications of wireless SHM systems, energy efficiency and cost reduction for this type of amplifiers is becoming a requirement. General lab grade amplifiers are big and costly, and not built for outdoor environments. Although some piezoceramic power amplifiers are available in the market, none of them are specifically targeting the wireless constraints and low power requirements. In this paper, a piezoceramic transducer amplifier for wireless active SHM systems has been designed. Power requirements are met by two digital On/Off switches that set the amplifier in a standby state when not in use. It provides a stable ${\pm}180$ Volts output with a bandwidth of 7k Hz using a single 12 V battery. Additionally, both voltage and current outputs are provided for feedback control, impedance check, or actuator damage verification. Vibration control tests of an aluminum beam were conducted in the University of Houston lab, while wireless active SHM tests of a wind turbine blade were performed in the Harbin Institute of Technology wind tunnel. The results showed that the developed amplifier provided equivalent results to commercial solutions in suppressing structural vibrations, and that it allows researchers to perform active wireless SHM on moving objects with no power wires from the grid.

Active control of delaminated composite shells with piezoelectric sensor/actuator patches

  • Nanda, Namita;Nath, Y.
    • Structural Engineering and Mechanics
    • /
    • v.42 no.2
    • /
    • pp.211-228
    • /
    • 2012
  • Present study deals with the development of finite element based solution methodology to investigate active control of dynamic response of delaminated composite shells with piezoelectric sensors and actuators. The formulation is based on first order shear deformation theory and an eight-noded isoparametric element is used. A coupled piezoelectric-mechanical formulation is used in the development of the constitutive equations. For modeling the delamination, multipoint constraint algorithm is incorporated in the finite element code. A simple negative feedback control algorithm coupling the direct and converse piezoelectric effects is used to actively control the dynamic response of delaminated composite shells in a closed loop employing Newmark's time integration scheme. The validity of the numerical model is demonstrated by comparing the present results with those available in the literature. A number of parametric studies such as the locations of sensor/actuator patches, delamination size and its location, radius of curvature to width ratio, shell types and loading conditions are carried out to understand their effect on the transient response of piezoceramic delaminated composite shells.

$H{\infty}$-force control of a artificial finger with distributed force sensor and piezoelectric actuator (분포센서를 가진 인공지의 $H{\infty}$-힘제어)

  • ;;;;Seiji Chonan
    • Journal of KSNVE
    • /
    • v.6 no.5
    • /
    • pp.555-565
    • /
    • 1996
  • This paper is concerned with the theoretical and experimental study on the force control of a miniature robotic finger that grasps an object at three other positions with the fingertip. The artificial finger is a uniform flexible cantilever beam equipped with a distributed set of compact grasping force sensors. Control action is applied by a piezoceramic bimorph strip placed at the base of the finger. The mathematical model of the assembled electro- mechanical system is developed. The distributed sensors are described by a set of concentrated mass-spring system. The formulated equations of motion are then applied to a control problem in which the finger is commanded to grasp an object. The H$_{\infty}$-controller is introduced to drive the finger. The usefulness of the proposed control technique is verified by simulation and experiment..

  • PDF

Experiment on Vibration Control of Beam Using Active Constrained-Layer Damping Treatment (능동구속감쇠 기법을 이용한 보의 진동제어 실험)

  • 강영규;최진영;김재환
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.11 no.4
    • /
    • pp.52-57
    • /
    • 2001
  • The flexural vibration of aluminum beams with active and passive constrained-layer damping has been investigated experimentally to design a structure with maximum possible damping capacity. Piezoelectric film is used as a sensor and piezoceramic as an actuator for the negative velocity feedback control. The experimental results are compared with those by the finite element analysis. This paper shows the effectiveness of active constrained-layer damping treatment through experiments, and we have carried out an experiment to study the effect of beam thickness.

  • PDF

Hybrid Vibration Control of Smart Laminated Composite Beams using Piezoelectric and Viscoelastic Material (압전재료와 점탄성 재료를 이용한 지능 복합적층보의 하이 브리드 진동제어)

  • Kang, Young-Kyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.10
    • /
    • pp.148-153
    • /
    • 2001
  • Active control of flexural vibrations of smart laminated composite beams has been carried out using piezoceramic sensor/actuator and viscoelastic material. The beams with passive constrained layer damping hale been analyzed by formulating the equations of motion through the use of extended Hamilton's principle. The dynamic characteristics such as damping ratio and modal damping of the beam are calculated for various fiber orientations by means of iterative complex eigensolution method. This paper addresses a design strategy of laminated composite under flexural vibrations to design structure with maximum possible damping capacity.

  • PDF

PID-Force Control of a Artificial Finger with Distributed Force Sensor and Piezoelectric Actuator (분포센서를 가진 인공지의 PID-힘 제어)

  • Lee, Jae-Jung;Hong, Dong-Pyo;Chung, Tae-Jin;Chonan, Seiji;Chong, Kil-To;No, Tae-Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.9
    • /
    • pp.94-103
    • /
    • 1996
  • This paper is concerned with the theroretical and experimental study on the force control of a miniature robotic finger that grasps an object at three other positions with the fingertip. The artificial finger is uniform flexible cantilever beam equipped with a distributed set of compact grasping force secnsors. Control action is applied by a qiexoceramic bimorph strip placed at the base of the finger. The mathematical model of the assembled electro-mechanical system is developed. The distributed sensors are described by a set of concentrated mass-spring system. The formulated equations of motion are then applied to a control problem which the finger is commanded to grasp an object The PID-controller is introduced to drive the finger. The usefulness of the proposed control technique is verified by simulation and experiment.

  • PDF

Effect of Piezoactuator Length Variation for Vibration Control of Beams (보의 진동제어를 위한 압전 액추에이터의 길이변화 효과 연구)

  • Lee, Young-Sup
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.11
    • /
    • pp.1185-1191
    • /
    • 2008
  • This paper presents an approach to define an optimal piezoactuator length to actively control structural vibration. The optimal ratio of the piezoactuator length against the beam length when a pair of piezoceramic actuator and accelerometer is used to suppress unwanted vibration with direct velocity feedback(DVFB) control strategy is not clearly defined so far. It is well known that DVFB control can be very useful when a pair of sensor and actuator is collocated on structures with a high gain and excellent stability. It is considered that three different collocated Pairs of piezoelectric actuators (20, 50 and 100 mm long) and accelerometers installed on three identical clamped-clamped beams($30{\times}20{\times}1mm$). The response of each sensor-actuator pair requires strictly positive real(SPR) property to apply a high feedback gain. However the length of the piezoactuator affects the SPR property of the sensor-actuator response. Intensive simulation and experiment show the effect of the actuator length variation is strongly related with the frequency range of the SPR property. Thus an optimal length ratio was suggested to obtain relevant performance with a good stability under the DVFB strategy.

Direct Velocity Feedback for Tip Vibration Control of a Cantilever Beam with a Non-collocated Sensor and Actuator Pair (비동위치화된 센서와 액추에이터를 이용한 외팔보의 끝단 진동에 대한 직접속도 피드백제어)

  • Lee, Young-Sup
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.109-114
    • /
    • 2004
  • This paper presents a theoretical and experimental study of a non-collocated pair of piezopolymer PVDF sensor and piezoceramic PZT actuator, which are bonded on a cantilever beam, in order to suppress unwanted vibration at the tip of the beam. The PZT actuator patch was bonded near the clamped part and the PVDF sensor, which was triangularly shaped, was bonded on the other part of the beam. This is because the triangular PVDF sensor is known that it can detect the tip velocity of a cantilever beam. Because the arrangement of the sensor and actuator pair is not collocated and overlapped each other, the pair can avoid so called 'the in-plane coupling'. The test beam is made of aluminum with the dimension of $200\times20\times2mm$, and the two PZT5H actuators are both $20\times20\times1mm$ and bonded on the beam out-of-phase, and the PVDF sensor is $178mm\times6mm\times52{\mu}m$. Before control, the sensor-actuator frequency response function is confirmed to have a nice phase response without accumulation in a reasonable frequency range of up to 5000 Hz. Both the DVFB and displacement feedback strategies made the error signal from the tip velocity (or displacement) sensor is transmitted to a power amplifier to operate the PZT actuator (secondary source). Both the control methods attenuate the magnitude of the first two resonances in the error spectrum of about 6-7 dB.

  • PDF

Active Control of Honeycomb Trim Panels for Aircrafts (항공기용 하니콤 트림판넬의 능동제어)

  • Elliott Stephan J.;Jeong, W.B.;Hong, Chin-Suk
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.464-473
    • /
    • 2006
  • This paper summarises theoretical and experimental work on the feedback control of sound radiation from honeycomb panels using piezoceramic actuators. It is motivated by the problem of sound transmission in aircraft, specifically the active control of trim panels. Trim panels are generally honeycomb structures designed to meet the design requirement of low weight and high stiffness. They are resiliently-mounted to the fuselage for the passive reduction of noise transmission. Local coupling of the closely-spaced sensor and actuator was observed experimentally and modelled using a single degree of freedom system. The effect of the local coupling was to roll-off the response between the actuator and sensor at high frequencies, so that a feedback control system can have high gain margins. Unfortunately, only relatively poor global performance is then achieved because of localisation of reduction around the actuator. This localisation prompts the investigation of a multichannel active control system. Globalised reduction was predicted using a model of 12 channel direct velocity feedback control. The multichannel system, however, does not appear to yield a significant improvement in the performance because of decreased gain margin.

  • PDF

Multichannel Active Control of Honeycomb Trim Panels for Aircrafts (항공기용 하니콤 트림판넬의 다채널 능동제어)

  • Hong, Chin-Suk
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.12 s.117
    • /
    • pp.1252-1261
    • /
    • 2006
  • This paper summarizes theoretical work on the multichannel decentralized feedback control of sound radiation from aircraft trim panels using piezoceramic actuators. The aircraft trim panels are generally honeycomb structures designed to meet the design requirement of low weight and high stiffness. They are resiliently-mounted to the fuselage for the passive reduction of noise transmission. It is motivated by the localization of reduction in vibration of single channel active trim panels. 12-channel decentralized feedback control systems are investigated in terms of the reduction of noise and vibration for three configurations of sensor actuator pairs. Local coupling of the closely-spaced sensor and actuator pairs was modeled using single degree of freedom systems. The multichannel control system is characterized using the state-space model. For the stability point of view, the relative stability or robustness is evaluated by comparing the real part of eigenvalues of the system matrix for the three configurations. The control performance is also evaluated and compared for the three configurations. It is found that the multichannel system can lead to the globalization of the reduction in vibration and radiated noise. It does not appear to yield a significant improvement in the vibration because of decreased gain margin. However, the reduction in the radiated noise is remarkably improved due to the variation of the vibration pattern with the actuation configurations.