• 제목/요약/키워드: Piezo actuator (PZT)

검색결과 40건 처리시간 0.032초

복합재료와 압전재료로 구성된 곡면형 작동기의 열변형 및 잔류응력 해석 (Thermal Deformation and Residual Stress Analysis of Lightweight Piezo-composite Curved Actuator)

  • 정재한;박기훈;박훈철;윤광준
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2001년도 춘계학술발표대회 논문집
    • /
    • pp.126-129
    • /
    • 2001
  • LIPCA (LIghtweight Piezo-composite Curved Actuator) is an actuator device which is lighter than other conventional piezoelectric ceramic type actuator. LIPCA is composed of a piezoelectric ceramic layer and fiber reinforced light composite layers, typically a PZT ceramic layer is sandwiched by a top fiber layer with low CTE (coefficient of thermal expansion) and base layers with high CTE. LIPCA has curved shape like a typical THUNDER (thin-layer composite unimorph feroelectric driver and sensor), but it is lighter an than THUNDER. Since the curved shape of LIPCA is from the thermal deformation during the manufacturing process of unsymmetrically laminated lay-up structure, an analysis for the thermal deformation and residual stresses induced during the manufacturing process is very important for an optimal design to increase the performance of LIPCA. To investigate the thermal deformation behavior and the induced residual stresses of LIPCA at room temperature, the curvatures of LIPCA were measured and compared with those predicted from the analysis using the classical lamination theory. A methodology is being studied to find an optimal stacking sequence and geometry of LIPCA to have larger specific actuating displacement and higher force. The residual stresses induced during the cooling process of the piezo-composite actuators have been calculated. A lay-up geometry for the PZT ceramic layer to have compression stress in the geometrical principal direction has been designed.

  • PDF

PZT 구동기를 이용한 지렁이 이동방식의 캡슐형 내시경용 마이크로 로봇 (An Earthworm-Like Locomotive Mechanism for Capsule Endoscopes Using PZT Actuator)

  • 지창열;박석호;윤석진;김병규;박장현
    • 대한기계학회논문집A
    • /
    • 제30권1호
    • /
    • pp.84-89
    • /
    • 2006
  • A wireless capsule endoscope has been developed to replace the conventional endoscope. However, the commercialized capsule endoscope moves passively by peristaltic waves, which has some limitations for doctors to diagnose more thoroughly and actively. In order to solve this problem, a locomotive mechanism is proposed for wireless capsule endoscopes. Based on the tests of various actuators, a piezo actuator is selected as a micro actuator for capsule endoscope. In general, piezo actuators are known to have limited displacement with high voltage supply. In order to overcome the limitation of common piezo actuator, the impact based piezo actuator, is developed to realize long stroke up 11mm. By using the impact based piezo actuator, a prototype of an earthworm-like locomotive mechanism was developed. In addition, the proposed locomotive mechanism has engraved clamps mimicked the claw of an insect. The earthworm-like locomotive mechanism has 15 mm in diameter and 30mm under retraction stage and 41 mm under elongation stage in total length. Hollow space is allocated to comprise essential endoscope components such as a camera, a communication module, bio sensors, and a battery. For the feasibility test of proposed locomotive mechanism, a series of experiments were carried out including in-vitro tests. Based on results of the experiments, we conclude that the proposed locomotive mechanism is effective to be used for micro capsule endoscopes.

반도체 공정을 고려한 유한요소해석에 의한 MEMS 압전 작동기의 동특성 해석 (Development of Finite Element Model for Dynamic Characteristics of MEMS Piezo Actuator in Consideration of Semiconductor Process)

  • 김동운;송종형;안승도;우기석
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2013년도 춘계학술대회 논문집
    • /
    • pp.454-459
    • /
    • 2013
  • For the purpose of rapid development and superior design quality assurance, sophisticated finite element model for SOM(Spatial Optical Modulator) piezo actuator of MOEMS device has been developed and evaluated for the accuracy of dynamics and residual stress analysis. Parametric finite element model is constructed using ANSYS APDL language to increase the design and analysis performance. Geometric dimensions, mechanical material properties for each thin film layer are input parameters of FE model and residual stresses in all thin film layers are simulated by thermal expansion method with psedu process temperature. $6^{th}$ mask design samples are manufactured and $1^{st}$ natural frequency and 10V PZT driving displacement are measured with LDV. The results of experiment are compared with those of the simulation and validate the good agreement in $1^{st}$ natural frequency within 5% error. But large error over 30% occurred in 10V PZT driving displacement because of insufficient PZT constant $d_{31}$ measurement technology.

  • PDF

Piezoelectric PZT Cantilever Array Integrated with Piezoresistor for High Speed Operation and Calibration of Atomic Force Microscopy

  • Nam, Hyo-Jin;Kim, Young-Sik;Cho, Seong-Moon;Lee, Caroline-Sunyong;Bu, Jong-Uk;Hong, Jae-Wan
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • 제2권4호
    • /
    • pp.246-252
    • /
    • 2002
  • Two kinds of PZT cantilevers integrated with a piezoresistor have been newly designed, fabricated, and characterized for high speed AFM. In first cantilever, a piezoresistor is used to sense atomic force acting on tip, while in second cantilever, a piezoresistor is integrated to calibrate hysteresis and creep phenomena of the PZT cantilever. The fabricated PZT cantilevers provide high tip displacement of $0.55\mu\textrm{m}/V$ and high resonant frequency of 73 KHz. A new cantilever structure has been designed to prevent electrical coupling between sensor and PZT actuator and the proposed cantilever shows 5 times lower coupling voltage than that of the previous cantilever. The fabricated PZT cantilever shows a crisp scanned image at 1mm/sec, while the conventional piezo-tube scanner shows blurred image even at $180\mu\textrm{m}/sec$. The non-linear properties of the PZT actuator are also well calibrated using the piezoresistive sensor for calibration.

압전소자 밸브 특성에 관한 실험적 연구 (Experimental Study on the Characteristics of Pneumatic Valve with Piezoelectric Element)

  • 윤소남;함영복;조정대;유찬수
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2003년도 춘계학술대회 논문집
    • /
    • pp.828-831
    • /
    • 2003
  • The benefits of the pneumatic valve with piezoelectric element are faster response times, low energy consumption, and the ability to be used in hazardous environments and field bus systems. In this paper, PZT actuator, 2 and 3 stages pneumatic valve were designed and manufactured. Also. characteristics of the pneumatic valve with piezoelectric element were tested with a testing system. It is confirmed that the PZT actuator is useful one for controlling the direction of pilot valve.

  • PDF

경량 압전 복합재료 작동기를 이용한 끝단 질량이 부착된 보의 진동 제어 (Vibration Control of a Beam with a Tip Mass using a Lightweight Piezo-composite Actuator)

  • 란동 마투아;박훈철;구남서
    • 한국항공우주학회지
    • /
    • 제35권3호
    • /
    • pp.218-224
    • /
    • 2007
  • PZT와 같은 압전 재료는 능동 진동 억제 분야에서 널리 사용되고 있지만 단일 PZT의 경우 장착 과정에서의 손상, 전기 누전, 낮은 피로 성능과 같은 문제가 지적되고 있다. 이러한 문제를 해결하기 위하여 개발된 LIPCA 작동기는 여러 층의 복합재료와 PZT 층으로 구성되어 있다. 본 연구에서는 LIPCA 작동기를 끝단 질량이 부착된 알루미늄 외팔보의 진동을 억제하는데 적용하였다. 양변위 되먹임 제어 알고리듬을 사용하였으며, 필터 주파수를 대상 모드의 첫 번째 고유진동수에 맞추었다. 실험적으로 구한 알루미늄 보의 고유 진동수는 유한요소 해석의 결과와 잘 일치하였다. LIPCA 작동기를 능동 진동제어에 적용할 때 효율성을 시간과 주파수 영역에서 확인하고자 하였는데, 실험 결과 PPF제어를 사용한 LIPCA 작동기가 자유 진동의 안정화 시간과 강제 진동의 진폭을 효과적으로 제어할 수 있었다. 사례 연구로 다른 두께를 가지는 보의 강제 진동 제어를 수행하였다.

유한요소법을 이용한 초정밀 미동스테이지 설계에 관한 연구(I) (A Study on the Design of Ultra Precision Positioning Apparatus using FEM (I))

  • 김재열;윤성운;김항우;한재호;곽이구
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2001년도 춘계학술대회 논문집
    • /
    • pp.190-194
    • /
    • 2001
  • Because, Piezo-electric transducer(PZT) transform electric energy into mechanical energy, it is a adequate material for positioning control and force control, take excellent properties as actuator with high speed and high performance. Recently, researches of ultra precision positioning using this PZT are advanced in. In this paper, we use a actuator of PZT, design a positioning apparatus with ultra precision position apparatus as hinge structure. Because of this purpose, before, we were confirmed in control properties of ultra precision stage by FEM method.

  • PDF

PZT 나노 스테이지를 이용한 광센서의 위치결정 (A Position Decision of Photo Sensor using a PZT Nano Positioning Stage)

  • 차영엽
    • 제어로봇시스템학회논문지
    • /
    • 제22권4호
    • /
    • pp.271-275
    • /
    • 2016
  • For machining systems like the motor driven linear stage which have high precision positioning with a long stroke, it is necessary to examine the repeatability of the reference position decision. Though piezo (PZT) actuator driven linear stages have high precision feed drivers and a short stroke, they have some limitations for reference position decisions if they have not been equipped with an accurate home sensor. This study was performed to examine the repeatability for home position decision of a EE-SX671 photo sensor as a home switch by using piezo actuator driven linear stages and capacitance probe.

압전액추에이터를 이용한 비례 가스유량제어밸브 (Proportional Gas Flow Control Valve Using Piezo Actuator)

  • 윤소남;김찬용;함영복;이경우;강정호
    • 유공압시스템학회논문집
    • /
    • 제2권3호
    • /
    • pp.6-11
    • /
    • 2005
  • A household gas valve is used for flow control of LPG(Liquefied Petroleum Gas) or LNG(Liquefied Natural Gas) of which pressure is about $200mmH_2O(\fallingdotseq\;0.0196[bar])$. Currently, two kinds of valves such as rotary type and button type are widely used in many applications. But, these valves have some problems that they are not controllable and reliable. Piezo actuation combined with modem microelectronics provides a reliable, quiet, low energy, infinitely adjustable gas valve. In this paper, gas valve using piezo actuator which are bimorph and a circle type was studied. Also, Prototype for gas valve was manufactured and characteristics of the prototype gas valve were analyzed.

  • PDF