• Title/Summary/Keyword: Piezo Pump

Search Result 19, Processing Time 0.033 seconds

Comparison Analysis of Dynamic Characteristics of Servo-hydraulic Piezo-driven Injector between 3-way and Bypass-circuit Type (3-way형과 Bypass형 서보유압 피에조 인젝터의 구동특성 비교)

  • Jo, Insu;Jeong, Myoungchul;Lee, Jinwook
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.5
    • /
    • pp.169-175
    • /
    • 2013
  • CRDi technology of diesel engine was developed from in the early 2000s due to a need to increase fuel efficiency and environment care. Especially, high-pressure fuel injection system in CRDi system which has a fuel injection unit including an injector, a fuel pump and common-rail, etc. becomes possible to make the exhaust gas clean as well as power improvement. In this study, comparison of dynamic characteristics of servo-hydraulic piezo-driven injector with 3-way and bypass-circuit type was analyzed by using the AMESim code. As results of this study, it found the bypass-circuit inside servo-hydraulic piezo injector can cause a faster injection response than that of the 3-way type. Also it was shown that bypass-circuit type had better control capability due to hydraulic bypass system.

Experimental Study on the Performance of a Bidirectional Hybrid Piezoelectric-Hydraulic Actuator

  • Jin, Xiao Long;Ha, Ngoc San;Li, Yong Zhe;Goo, Nam Seo;Woo, Jangmi;Ko, Han Seo;Kim, Tae Heun;Lee, Chang Seop
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.4
    • /
    • pp.520-528
    • /
    • 2015
  • The piezoelectric-hydraulic actuator is a hybrid device that consists of a hydraulic pump driven by a piezo-stack coupled to a conventional hydraulic cylinder. The actuator is of compact size, but can produce a moderate energy output. Such hybrid actuators are currently being researched and developed in many industrialized countries due to the requirement for high performance and compact flight systems. In a previous study, we designed and manufactured a unidirectional hybrid actuator. However, the blocking force was not as high as expected. Therefore, in this study, we redesigned the pump chamber and hydraulic cylinder and also improved the system by removing the air bubbles. Two different types of piezo-stacks were used. In order to achieve bidirectional capabilities in the actuator, commercial solenoid valves were used to control the direction of the output cylinder. Experimental testing of the actuator in unidirectional and bidirectional modes was performed to examine performance issues related to driving frequency, bias pressure, reed valve thickness, etc. The results showed that the maximum blocking force was measured as 970.2N when the frequency was 185Hz.

A Cloud-based Infusion Injector using Piezoelectric Micropump (피에조마이크로펌프를 이용한 클라우드기반 수액주입기)

  • Song, Young-Jin;Kang, Jung-Gu;Song, Geun-San
    • Journal of the Semiconductor & Display Technology
    • /
    • v.17 no.4
    • /
    • pp.62-65
    • /
    • 2018
  • We will provides a micro-pump infusion injector with the cloud networking for remote control. The existing infusion injector with controlled manually have an uncomfortable to use it inconveniently. The proposed remote control infusion, infusion system enables the identification and control of injected amount through the IOT function on th WEB. The micro-pump used is a piezo electric pump manufactured by using MEMS technology, and the amount of charge is varied depending on the frequency magnitude through the micro-controller. The micro-pump can adjust the speed of the fluid depending on the frequency and can be from 0.1ml / min to 7ml / min when the frequency is from 3 to 110Hz.

A Study on Optimal Design of Direct Needle-driven Piezo Injector for Accomplishing Injection Pressure of 1800 bar (분사압력 1800 bar 실현을 위한 직접 니들구동방식 피에조 인젝터 설계 최적화 연구)

  • Han, Sangik;Kim, Juhwan;Ji, Hyungsun;Go, Junchae;Kim, Jinsu;Lee, Jinwook
    • Journal of ILASS-Korea
    • /
    • v.21 no.3
    • /
    • pp.121-129
    • /
    • 2016
  • The advantages of the common rail fuel injection system architecture have been recognized since the development of the diesel engine. In common rail systems, a high-pressure pump stores a reservoir of fuel at high pressure up to and above 2000 bar. And solenoid or piezoelectric valves make possible fine electronic control over the fuel injection time and quantity, and the higher pressure that the common rail technology makes available provides better fuel atomization. In this study, the direct needle-driven piezo injector was investigated for accomplishing injection pressure of 1800 bar by optimal design by simplification of component and changing number of springs and plates of DPI. It was found that a direct needle-driven piezo injection system features the prototype DPI for passenger vehicle to operate at 1800 bar of injection pressure.

The Lubrication Characteristics of the Vane Tip Under Pressure Boundary Condition of Oil Hydraulic Vane Pump

  • Cho Ihn-Sung;Oh Seok-Hyung;Song Kyu-Keun;Jung Jae-Youn
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.10
    • /
    • pp.1716-1721
    • /
    • 2006
  • The Lubrication Mode of line contacts between the vane and the camring in an oil hydraulic vane pump has been investigated. First, the variations of the radial force of a vane were calculated from previous measurements of dynamic internal pressure in four chambers surrounding a vane. Next, the lubrication modes were distinguished with Hooke's chart, which is an improvement over Johnson's chart. Finally, the influence of the boundary conditions in the lubrication region on the fluid film lubrication was examined by calculating the film pressure distributions. The results showed that the lubrication mode of the vane tip exists in the rigid-variable-viscosity region, and that discharge pressure higher than 7 MPa greatly affects the oil film pressure in the small and the large arc section because of the Piezo-viscous effect.

The Lubrication Characteristics of the Vane Tip Under Inlet Pressure Boundary Conditions for an Oil Hydraulic Vane Pump

  • Cho Ihn-Sung;Oh Seok-Hyung;Jung Jae-Youn
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.12
    • /
    • pp.2179-2186
    • /
    • 2005
  • The lubrication modes of line contact between the vane and the camring in an oil hydraulic vane pump have been investigated. First, variations of the radial acting force of a vane were calculated from previously measured results of the dynamic internal pressure in four chambers surrounding a vane. Next, distinctions of the lubrication modes were made using Hooke's chart, which represents an improvement over Johnson's chart. Finally, the influence of boundary conditions in the lubrication region on fluid film lubrication was examined by calculating film pressure distributions. The results show that the lubrication modes of the vane tip are a rigid-variable viscosity region. This region discharges pressure higher than 7 MPa, and exerts a great influence on oil film pressure in the large arc section due to the Piezo-viscous effect.

A Study on the Characteristics of Mass Transfer in Hollow Fiber Membranes (중공사막에서의 물질전달 특성에 관한 연구)

  • 김기범;김종석;김종수;유일수;이왕로;김성종
    • Membrane Journal
    • /
    • v.14 no.2
    • /
    • pp.142-148
    • /
    • 2004
  • This paper presents the enhancement of oxygen transfer efficiency using vibrating intravascular lung assist device (VIVLAD) for patients having chronic respiratory problems. The flow rate was controlled by the pump and monitored by a built-in flow meter. The vibration apparatus was composed of a piezo-actuator, a function generator, and a power amplifier. Gas flow rates of up to 6 L/min through the 120-cm-long hollow fibers have been achieved by exciting a piezo-actuator. The output PVDF sensor and FRF (frequency response function) were investigated by various frequency in VIVLAD. As a result, the maximum oxygen transfer rate was found to occur with maximum amplitude and the transfer of vibration to the hollow fiber membranes. It was excited by the frequency band of 35 Hz at various distilled water flow rates, and various module types.

Vibration analysis of characteristics and valveless Type Piezoelectric micro-pump (VALVELSS 압전펌프 진동 해석 및 특성)

  • Lim, Jong-Nam;Oh, Jin-Heon;Lim, Kee-Joe;Kim, Hyun-Hoo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.185-185
    • /
    • 2009
  • Micropump is very useful component in micro/nano fluidics and bioMEMS applications. Using the flexural vibration mode of PZT bar, a piezopump is successfully made. The PZT bar is polarized with thickness direction. The proposed structure for the piezo-pump consists of an input and an output port, piezoelectric ceramic actuator, actuator support, diaphragm. The traveling flexural wave along the bar is obtained by dividing two standing waves which are temporally and spatially phase shifted by 90 degrees from each other. Fluid is drawn into a forming chamber, eventually the forming chamber closes trapping the fluid therein. The finite elements analysis on the proposed pump model is carried out to verify its operation principle and design by the commercial FEM software. Components of piezopump were made, assembled, and tested to validate the concepts of the proposed pump and confirm the simulation results. The performance of the proposed piezopump the highest pressure level of 83.4kHz.

  • PDF