• 제목/요약/키워드: Piezo Inkjet

검색결과 27건 처리시간 0.025초

잉크젯 입력 파형의 파라미터와 토출 속도의 관계 (Relationship between Ink Jetting Speed and Inkjet input Waveform Parameters)

  • 권계시;명재환;엄태준;주영철;이상욱
    • 한국정밀공학회지
    • /
    • 제26권9호
    • /
    • pp.143-147
    • /
    • 2009
  • Inkjet printing makes use of ink droplets to form required patterns on a substrate. In order for the inkjet technology to produce reliable patterning tools, the jetting performance needs be controlled precisely. For controlling ink jetting performance, input waveform should be properly designed. In the past, the research was focused on designing dwell time of the input waveform for controlling jetting speed. However, the jetting performance is also closely related to rising and falling time. In this study, the effect of the rising and falling time on droplet speed will be investigated by measuring the droplet speed. In this study, the power OP amp (PA98A) was used in order to drive piezo inkjet head by amplifying the waveform generated from arbitrary function generator. The experimental results show that change of rising and falling time in the waveform not only affect the droplet speed but also optimal dwell time.

피에조 잉크젯 헤드의 액적 토출 형상 전산해석 (Numerical Simulation of Inkjet Drop Formation in Piezo Inkjet Head)

  • 주영철;박상국;권계시
    • 한국산학기술학회논문지
    • /
    • 제17권7호
    • /
    • pp.641-647
    • /
    • 2016
  • 피에조 DOD(drop-on-demand) 잉크젯 프린팅 방식은 다양한 종류의 잉크를 사용할 수 있기 때문에 최근에 첨단 산업에 적용이 활발히 연구되고 있다. 피에조 잉크젯 헤드에서 토출되는 액적의 형성 과정을 VOF(Volume-of-Fluid) 기법을 이용한 전산해석으로 예측하고 이를 측정결과와 비교하였다. 작동유체는 에틸렌 글리콜 50%와 IPA(Isopropil alchol) 50%의 혼합액을 사용하였다. 노즐 출구에서 메니스커스 변위의 시간에 따른 변화를 직접 측정하여 노즐 입구의 속도분포를 예측하고 이를 해석의 초기조건 입력자료로 사용하였다. 측정치와 해석치를 비교한 결과 전산해석이 측정치의 액적 형성 과정을 잘 예측함을 알 수 있었다. 주액적 형성과정보다 위성액적 형성과정 예측에 오차가 약간 컸는데, 이는 정지중의 공기에 큰 질량의 주액적이 날아가는 것을 예측할 때는 해석오차가 적지만 주액적에 의해서 주변 공기 유동이 활발해진 상태에서 적은 질량의 위성액적이 날아가는 것을 예측할 때는 해석오차가 상대적으로 커지기 때문이다. 또한 에틸렌 글리콜과 IPA의 혼합 비율을 달리하여 물성치를 변화시킨 다른 잉크에 대해서도 잉크 액적 형상을 예측한 결과 실험 결과를 비교적 정확히 예측할 수 있었다.

피에조 잉크젯 헤드에서 액적 토출 현상에 대한 연구 (A Study on Droplet Formation from Piezo Inkjet Print Head)

  • 오세영;이정용;이유섭;정재우;위상권
    • 대한기계학회논문집B
    • /
    • 제30권10호
    • /
    • pp.1003-1011
    • /
    • 2006
  • Droplets are ejected onto a substrate through a nozzle by pushing liquids in flow channels of drop-on-demand devices. The behavior of ejection and formation of droplets is investigated to enhance the physical understanding of the hydrodynamics involved in inkjet printing. The free surface phenomenon of a droplet is described using $CFD-ACE^{TM}$ which employs the volume-of-fluid (VOF) method with the piecewise linear interface construction (PLIC). Droplet formation characteristics are analyzed in various flow regimes with different Ohnesorge numbers. The computational results show that the droplet formations are strongly dependent on the physical properties of working fluids and the inlet flow conditions. In addition, the wetting characteristics of working fluids on a nozzle influence the volume and velocity of a droplet produced in the device. This study may provide an insight into how a liquid droplet is formed and ejected in a piezoelectric inkjet printing device.

미세패턴 구현을 위한 잉크젯 응용 기술 (Fine resolution patterning aided by inkjet printing)

  • 신동윤;김동수;함영복;최병오
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.587-588
    • /
    • 2006
  • Drop-on-Demand (DOD) inkjet printing technology, especially piezo-typed, has been paid attention by industries due to its inherent nature of unbeatable material usage and low cost manufacturing cost. Despite of these key advantages over any other competing manufacturing technologies, the primary disadvantage has been considered as its limited capability to produce fine resolution patterns with a commercially available DOD inkjet print head. Although the main effort has been focused on the production of a DOD inkjet print head with smaller nozzles to overcome this challenging issue, an alternative approach could be taken and it would enable to expand the employment of DOD inkjet printing technology to applications requiring fine patterns further more.

  • PDF

잉크젯 헤드를 이용한 액적 토출 현상의 실험적 분석 (Experimental Analysis of Droplet Formation Process for Inkjet Printhead)

  • 조용민;박성준
    • 한국분무공학회지
    • /
    • 제15권4호
    • /
    • pp.163-169
    • /
    • 2010
  • Jetting stability is the most important factors in inkjet printing because printing quality is totally determined by shape of the droplets on the substrate. In order to acquire stable jet, viscosity and dynamic behavior of the ink must be considered. In addition, waveform to drive the inkjet printhead is also to be controlled. In this study, the driving waveform composed of rising time, dwell time and falling time is optimized to obtain a stable jetting using drop watcher system. Also, effect of ink viscosity on jetting is experimentally investigated by changing the temperature of ink cartridge. As a result, jetted drop having uniform velocity is acquired.

잉크젯 프린팅 기술을 이용한 기판 표면처리와 금속 패턴 형성에 관한 연구 (A Study of Substrate Surface Treatment and Metal Pattern Formation using Inkjet Printing Technology)

  • 조용민;박성준
    • 한국분무공학회지
    • /
    • 제17권1호
    • /
    • pp.20-26
    • /
    • 2012
  • Inkjet printing is one of the direct writing technologies and is able to form a pattern onto substrate by dispensing droplets in desired position. Also, by inkjet technology manufacturing time and production costs can be reduced, and procedures can be more efficient. To form a metal pattern, it must be harmonized with conductive nano ink, printing process, sintering, and surface treatment. In this study, micro patterning of conductive line has been investigated using the piezoelectric printhead driven by a bipolar voltage signal is used to dispense $20-40{\mu}m$ diameter droplets and silver nano ink which consists of 50 nm silver particles. In addition, hydrophobic treatment of surface, overlap printing techniques, and sintering conditions with changing temperature and times to achieve higher conductivity.

Theoretical Investigation of Jetting and Wetting Phenomena for the Fabrication of TFT LCD Color Filters

  • Shin, Dong-Youn;Brakke, Kenneth A.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2007년도 7th International Meeting on Information Display 제7권1호
    • /
    • pp.376-379
    • /
    • 2007
  • Although years of trials for the fabrication of TFT LCD color filters with the piezo Drop-On-Demand (DOD) inkjet printing technology have been made, the underlying physics of jetting and wetting has not been fully understood. In this study, the key engineering issues, jetting and wetting, are investigated with mathematical models.

  • PDF

고속카메라를 이용한 Drop-on-demand 방식의 정전 액적 토출 분석 (Analysis of Electrostatic Ejection of Liquid Droplets in Manner of Drop-on-demand Using High-speed Camera)

  • 김용재;최재용;손상욱;김영민;이석한;변도영;고한서
    • 한국가시화정보학회:학술대회논문집
    • /
    • 한국가시화정보학회 2007년도 추계학술대회
    • /
    • pp.128-133
    • /
    • 2007
  • An electrostatic inkjet head can be used for manufacturing processes of large display systems and printed circuit boards (PCB) as well as inkjet printers because an electrostatic field provides an external force which can be manipulated to control sizes of droplets. The existing printing methods such as thermal bubble and piezo inkjet heads have shown difficulties to control the ejection of the droplets for printing applications. Thus, the new inkjet head has been proposed using the electrostatic force. A numerical analysis has been performed to calculate the intensity of the electrostatic field using the Maxwell's equation. Also, experiments have been carried out to investigate the droplet movement using a downward capillary with outside diameter of $500{\mu}m$. Gravity, surface tension, and electrostatic force have been analyzed with high voltages for a drop-on-demand ejection. It has been observed that the droplet size decreases and the frequency of the droplet formation and the velocity of the droplet ejection increase with increasing the intensity of the electrostatic field using high-speed camera.

  • PDF