• Title/Summary/Keyword: Pierson-Moskowitz model

Search Result 12, Processing Time 0.028 seconds

Analysis of Electromagnetic Wave Scattering From a Perfectly Conducting Pierson-Moskowitz Surface Using a Monte-Carlo FDTD Technique (몬테칼로 유한차분 시간영역 해석기법을 이용한 피어선-모스코위츠 완전도체 표면에서의 전자파 산란 해석)

  • 최동묵;김채영
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.40 no.6
    • /
    • pp.253-259
    • /
    • 2003
  • In this paper, the scattered field from a Pierson-Moskowitz sea surface assumed as the PEC by the Finite-Difference Time-Domain(FDTD) method was computed. A one-dimensional surface used to analysis scattering was generated by using the Pierson-Moskowitz model. Back scattering coefficients are calculated with different values of the wind speed(U) which determine configuration of the Pierson-Moskowitz sea surface. The number of surface realization for the computed field, the point number, and the width of surface realization are set to be 50, 8192, and 128k, respectively. In order to verify the computed values these results are compared with those of small perturbation methods, which show good agreement between them.

High-Performance Time-Code Diversity Scheme for Shore-to-Sea Maritime Visible-Light Communication

  • Kim, Hyeongji;Sewaiwar, Atul;Chung, Yeon-Ho
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.5
    • /
    • pp.514-520
    • /
    • 2015
  • This paper presents a novel shore-to-sea maritime data transmission system based on time-code diversity, using visible light in maritime environments to overcome the limitations of conventional maritime wireless communications. The proposed system is primarily comprised of existing LED-based lighthouses and maritime transceivers (marine beacons, buoys, etc.), and thus is considered cost-effective in terms of implementation. We first analyze maritime visible-light communications on the basis of the unique properties of a maritime environment, i.e. sea states (wave height, wind speed, etc.), plus atmospheric turbulence, using the Pierson-Moskowitz (PM) and JONSWAP (JS) spectrum models. It is found that the JS model outperforms the PM model, and that the coverage distance depends on the LED power and sea states. To combat maritime fading conditions that significantly degrade performance and coverage distance, we propose a time-code diversity (TCD) scheme in which the delayed versions of the original data are retransmitted using orthogonal Walsh codes. This TCD scheme is found to be superior, in that it offers three orders of magnitude in terms of BER performance, compared to a conventional (non-TCD) transmission scheme. The proposed scheme is robust and efficient in overcoming the effect of impairments present in maritime environments with a BER of approximately $10^{-5}$and a data rate of 100 Kbps at a distance of 1 km.

Shore-to-sea Maritime Visible Light Communication using Color Clustered MIMO (컬러 클러스터 MIMO 기술을 적용한 해상 가시광 통신 시스템)

  • Kim, Hyeong-ji;Chung, Yeon-ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.8
    • /
    • pp.1773-1779
    • /
    • 2015
  • Shore-to-sea visible light communication using color clustered multiple-input and multiple-output (MIMO) is presented. The proposed maritime visible light communication (MVLC) offers a low-cost, high-speed wireless link for shore-to-sea maritime communications. Each color cluster is comprised of 50 red, green and blue (RGB) light emitting diodes (LEDs) and is modulated using on-off-keying (OOK). Selection combining is performed at the receiver, producing diversity effect within that color cluster. In this paper, we employ sea states (wave height, wind speed, etc.) data from both Pierson-Moskowitz and JONSWAP spectrum models under atmospheric turbulence conditions. Based on the simulation model, the maritime link quality is analysed in terms of coverage distance and bit error rate performance. The results show that the proposed system provides an efficient MVLC, while satisfying International Association of Lighthouse Authorities (IALA) requirements for maritime buoyage system and also offering sufficient illumination from high power LEDs.

Underwater Acoustic Communication Channel Modeling Regarding Magnitude Fluctuation Based on Ocean Surface Scattering Theory and BELLHOP Ray Model and Its Application to Passive Time-reversal Communication (해수면에 의한 신호 응답 강도의 시변동성 특성이 적용된 벨홉 기반의 수중음향 통신 채널 모델링 및 수동 시역전 통신 응용)

  • Kim, Joonsuk;Koh, Il-Suek;Lee, Yongshik
    • The Journal of the Acoustical Society of Korea
    • /
    • v.32 no.2
    • /
    • pp.116-123
    • /
    • 2013
  • This paper represents generation of time-varying underwater acoustic channels by performing scattering simulation with time-varying ocean surface and Kirchhoff approximation. In order to estimate the time-varying ocean surface, 1D Pierson-Moskowitz ocean power spectrum and Gaussian correlation function were used. The computed scattering coefficients are applied to the amplitudes of each impulse of BELLHOP simulation result. The scattering coefficients are then compared with measured doppler spectral density of signal components which were scattered from ocean surface and the correlation time used in the Gaussian correlation function was estimated by the comparison. Finally, bit-error-rate and channel correlation simulations were performed with the generated time-varying channel based on passive time-reversal communication scenario.

An Improved Semi-Empirical Model for Radar Backscattering from Rough Sea Surfaces at X-Band

  • Jin, Taekyeong;Oh, Yisok
    • Journal of electromagnetic engineering and science
    • /
    • v.18 no.2
    • /
    • pp.136-140
    • /
    • 2018
  • We propose an improved semi-empirical scattering model for X-band radar backscattering from rough sea surfaces. This new model has a wider validity range of wind speeds than does the existing semi-empirical sea spectrum (SESS) model. First, we retrieved the small-roughness parameters from the sea surfaces, which were numerically generated using the Pierson-Moskowitz spectrum and measurement datasets for various wind speeds. Then, we computed the backscattering coefficients of the small-roughness surfaces for various wind speeds using the integral equation method model. Finally, the large-roughness characteristics were taken into account by integrating the small-roughness backscattering coefficients multiplying them with the surface slope probability density function for all possible surface slopes. The new model includes a wind speed range below 3.46 m/s, which was not covered by the existing SESS model. The accuracy of the new model was verified with two measurement datasets for various wind speeds from 0.5 m/s to 14 m/s.

Accuracy Verification of Theoretical Models for Estimating Microwave Reflection from Rough Sea Surfaces (거친 바다표면의 마이크로파 반사 계산을 위한 이론적 모델 정확도 검증)

  • Park, Sinmyong;Oh, Yisok
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.10
    • /
    • pp.788-793
    • /
    • 2017
  • This paper presents the verification of accuracies of theoretical models for calculating the microwave reflections from rough sea surfaces. First of all, the Pierson-Moskowitz ocean spectrum was used to generate the rough sea surfaces. Then the relationship between the significant wave heights, root-mean-square(RMS) heights and wind speed was derived by estimating the significant wave heights and RMS heights of the generated sea surfaces according to various wind speeds, and compared the derived relationship with other measurement data sets. The reflection coefficients of the sea surfaces were calculated by using a numerical method(the moment method). Then, the numerical results were compared with Ament model, PO(Physical Optics) model, GO(Geometrical Optics) model and B-M(Brown-Miller) model for various roughness conditions(wind speed) and incidence angles. It was found that the Ament model is not accurate except for a very low roughness conditions($kh_{rms}$<0.4, k is wavenumber and $h_{rms}$ is RMS height). It was also found that at incidence angles lower than $70^{\circ}$, the PO and the GO models agree well with the numerical results, while the B-M model agrees well with the numerical analysis results at incidence angles higher than $80^{\circ}$ for very rough sea surfaces with $kh_{rms}$>10.

Effects of environmental parameters for offshore wind turbine system with jacket support structure (환경변수가 자켓 하부구조물 해상 풍력시스템 거동에 미치는 영향)

  • Lee, Jong-Sun;Park, Hyun-Chul;Shi, Wei;Kim, Yong-Hwan;Na, Sangkwon;Lee, Jonghyun
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.38.1-38.1
    • /
    • 2011
  • This study investigates the effects of Pierson-Moskowitz, Jonswap spectrum that are typical irregular wave spectrums for wind turbine system with jacket support structure. Also various offshore environmental parameters based on korean local condition were used in our study. The loads acting on the system was considered by referring to the Design Load Case from IEC guide line. And improved von Karman model was used as a turbulence model. As a result, various significant wave height and peak spectral period cause noticeable difference of extreme and fatigue loads prediction.

  • PDF

An Ocean Wave Simulation Method Using TMA Model (TMA 모델을 이용한 해양파 시뮬레이션 방법)

  • Lee Nam-Kyung;Baek Nakhoon;Kim Ku Jin;Ryu Kwan Woo
    • The KIPS Transactions:PartA
    • /
    • v.12A no.4 s.94
    • /
    • pp.327-332
    • /
    • 2005
  • In the field of computer graphics, we have several research results to display the ocean waves on the screen, while we still not have a complete solution yet. Though ocean waves are constructed from a variety of sources, the dominant one is the surface gravity wave, which is generated by the gravity and the wind. In this Paper, we Present a real-time surface gravity wave simulation method, derived from a precise ocean wave model in the oceanography. There are research results based on the Pierson-Moskowitz(PM) model[1], which assumes infinite depth of water and thus shows some mismatches in the case of shallow seas. In this paper, we started from the Texel, Marsen and Arsloe(TMA) model[2], which is a more precise wave model and thus can be used to display more realistic ocean waves. We derived its implementation model for the graphics applications and our prototype implementation shows about 30 frames per second on the Intel Pentium 4 1.6GHz-based personal computer. Our major contributions to the computer graphics area ill be (1) providing more user-controllable parameters to finally generate various wave shapes and (2) the improvement on the expression power of waves even in the shallow seas.

Analysis of Electromagnetic Wave Scattering from a Sea Surface Using a Monte-Carlo FDTD Technique

  • Choi Dong-Muk;Kim Che-Young;Kim Dong-Il;Jeon Joong-Sung
    • Journal of electromagnetic engineering and science
    • /
    • v.5 no.2
    • /
    • pp.87-91
    • /
    • 2005
  • This paper presents a Monte-Carlo FDTD technique to determine the scattered field from a perfectly conducting surface like a sea surface, from which the useful information on the incoherent pattern tendency could be observed. A one-dimensional sea surface used to analysis scattering was generated using the Pierson-Moskowitz model. In order to verify the numerical results by this technique, these results are compared with those of the small perturbation method, which show a good match between them. To investigate the incoherent pattern tendency involved, the dependence of the back scattering coefficients on the different wind speed(U) is discussed for the back scattering case.

Inner harbour wave agitation using boussinesq wave model

  • Panigrahi, Jitendra K.;Padhy, C.P.;Murty, A.S.N.
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.7 no.1
    • /
    • pp.70-86
    • /
    • 2015
  • Short crested waves play an important role for planning and design of harbours. In this context a numerical simulation is carried out to evaluate wave tranquility inside a real harbour located in east coast of India. The annual offshore wave climate proximity to harbour site is established using Wave Model (WAM) hindcast wave data. The deep water waves are transformed to harbour front using a Near Shore spectral Wave model (NSW). A directional analysis is carried out to determine the probable incident wave directions towards the harbour. Most critical threshold wave height and wave period is chosen for normal operating conditions using exceedence probability analysis. Irregular random waves from various directions are generated confirming to Pierson Moskowitz spectrum at 20m water depth. Wave incident into inner harbor through harbor entrance is performed using Boussinesq Wave model (BW). Wave disturbance experienced inside the harbour and at various berths are analysed. The paper discusses the progresses took place in short wave modeling and it demonstrates application of wave climate for the evaluation of harbor tranquility using various types of wave models.