• Title/Summary/Keyword: Pier column

Search Result 97, Processing Time 0.029 seconds

A Comparison Study of Direct Impact Analysis of Vehicle to Concrete Pier and In-Direct Impact Analysis using Load-Time History Functions (차량과 콘크리트 교각의 직접충돌해석법과 충돌하중이력곡선을 이용한 간접충돌해석법 비교연구)

  • Kim, WooSeok;Kim, Kyeongjin;Lee, Jaeha
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.6
    • /
    • pp.533-542
    • /
    • 2014
  • In design standards such as AASHTO LRFD and Korea Highway Bridge Design, the dynamic behaviors under the impact loading has not been considered and it recommends of using a static force for designing bridge column against vehicle collisions. Accordingly, in this study, models of vehicle collisions to concrete bridge column were developed with various boundary conditions in order to take into account dynamic behaviour of the column. Cargo trucks of 10tons, 16tons and 38tons were selected and a typical type of concrete bridge pier column along the Kyungbu highway in Korea was selected for this study. Results from this study indicate that the static load specified in the design standards are too small compared to results obtained in this study. It was also found that a consideration of the bridge superstructure allowed smaller damages of concrete bridge pier column under truck impact loadings. Furthermore, a comparison study of direct impact analysis of vehicle to bridge-column with in-direct impact analysis using load-time history functions was performed. The in-direct impact analysis shows that the use of load-time history graph improves the computational cost up to 92% and predict the behaviors of the bridge column under the impact loadings well. The obtained load-time history graph could be easily applied to several existing models.

Ductility Characteristics of a Hollow R.C Pier Internally Confined by a Corrugated Steel Tube (파형강관으로 내부구속된 중공 R.C 교각의 연성도)

  • Han Taek Hee;Kim Sung Nam;Kang Young Jong;Jung Doo-Suk
    • Proceedings of the KSR Conference
    • /
    • 2005.05a
    • /
    • pp.712-717
    • /
    • 2005
  • When the weight if a concrete member makes problems, or when the cost of the concrete is relatively high, it may be economical to use a hollow concrete member. But a hollow R.C column may have poor ductility because of the brittle failure at the inner face of the hollow R.C column. This brittle failure results from the absence of the confinement at the inner face of the hollow R.C column. To avoid this brittle failure an internally confined hollow R.C column by a steel tube was developed before. In this study, a hollow R.C column is internally confined by a corrugated steel tube instead of a general flat steel tube. And a column ductility is performed. Test results show that the energy ductility ratio of a internally confined hollow R.C column by a by a corrugated steel tube corresponds to $80\%$ of the energy ductility ratio of a general solid R.C column.

  • PDF

Seismic Performance of Column-Footing Connection of Modular Pier using CFT (CFT를 이용한 모듈러 교각 기둥-기초 연결부의 내진성능)

  • Kim, Ji Young;Kim, Ki Doo;Ma, Hyang Wook;Chung, Chul-Hun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.1
    • /
    • pp.73-85
    • /
    • 2014
  • The CFT (Concrete Filled steel Tubes) column-footing connection is cast-in-place embedded type which provides simple construction procedure, low cost, and superior structural performance. In this study, CFT column-footing connection of modular pier is proposed and structural performance is evaluated by experimental tests. To evaluate structural performance of the CFT column-footing connection, a series of experimental tests were performed for the 4 specimens with different embedded depth. As a result of the quasi-static test, the specimen with 0.6D (0.6 times the outside diameter of steel tube) embedded depth showed relatively low ductility than other specimens with larger embedded depth due to cone failure of base concrete occurred during the lower loading step. On the contrary, cone failure of the base concrete was not observed in the specimens with larger embedded depth than 0.9D, but typical flexural failure in lower part of CFT column was observed. With the analyses of force-displacement curve, displacement ductility, and energy dissipation capacity, it is concluded that the rational range of embedded depth of the CFT column-footing connection is from 0.9D to 1.2D in view of good seismic performance.

Comparison of Modeling Methods of a Pile Foundation in Seismic Analysis of Bridge Piers (교각의 내진설계를 위한 말뚝기초의 모델링 기법 비교)

  • 김나엽;김성렬;전덕찬;김명모
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.6 no.6
    • /
    • pp.25-32
    • /
    • 2002
  • In the seismic designing of bridges, the pile foundation of bridge piers generally have been modeled to have a fixed end for its convenience and conservative designing. The fixed-end assumption, however, produces very conservative results in terms of the pier forces. Therefore, many other design methods are evolved to consider the flexibility of the pile foundation. In this study, the response spectrum analysis was performed for a bridge pier having a pile foundation. The shear force, moment, and displacement, which occurred at the pier column under an earthquake loading, were compared to analyze the effects of the modeling method, soil condition and the input earthquake response spectrum. In most cases, the fixed-end model gives larger design forces than flexible foundation models. However, when a long period earthquake is applied to the bridge pier on a soft clay foundation, it is found that the flexible foundation models give larger design forces than the fixed-end model. In the end, the reliability of several flexible foundation models was verified by comparing their results with those of a numerical analysis that considers the soil-structure interaction phenomenon in a rigorous manner.

Determination of Effective Prestress of Post-tensioned Precast Bridge Piers (포스트텐션 조립식 교각의 유효프리스트레스 크기 결정)

  • Shim, Chang Su;Koem, Chandara
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.20 no.3
    • /
    • pp.135-143
    • /
    • 2016
  • In this paper, a design concept of post-tensioned precast bridge piers was proposed to improve seismic behavior of the bridge pier. Mild reinforcing bars are placed continuously along the height of the column. Prestressing tendons are also provided to obtain re-centering capability for seismic events. Arrangement of the axial steels to prevent buckling of rebars at plastic hinge region was suggested and enhanced seismic performance was verified by experiments. Moment-curvature analyses were performed to evaluate the effect of effective prestress on seismic behavior after verifying the calculation method by cyclic tests of the precast columns. A real bridge pier was designed to investigate the seismic performance according to different level of effective prestress. Level of effective prestress showed obvious effect on crushing displacement but negligible effect on lateral displacement at fracture of tendons and reinforcements.

Numerical simulation of bridge piers with spread footings under earthquake excitation

  • Chiou, Jiunn-Shyang;Jheng, Yi-Wun;Hung, Hsiao-Hui
    • Earthquakes and Structures
    • /
    • v.16 no.6
    • /
    • pp.691-704
    • /
    • 2019
  • This study simulates the responses of large-scale bridge piers under pseudo-dynamic tests to investigate the performance of four types of numerical models that consider the nonlinear behavior of the pier and the rocking behavior of the footing. In the models, beam-column elements with plastic hinges are used for the pier, two types of foundation models (rotational spring and distributed spring models) are adopted for the footing behavior, and two types of viscous damping models (Rayleigh and dashpot models) are applied for energy dissipation. Results show that the nonlinear pier model combined with the distributed spring-dashpot foundation model can reasonably capture the behavior of the piers in the tests. Although the commonly used rotational spring foundation model adopts a nonlinear moment-rotation property that reflects the effect of footing uplift, it cannot suitably simulate the hysteretic moment-rotation response of the footing in the dynamic analysis once the footing uplifts. In addition, the piers are susceptible to cracking damage under strong seismic loading and the induced plastic response can provide contribution to earthquake energy dissipation.

The Strain of Transverse Steel and Concrete Shear Resistance Degradation after Yielding of Reinforced Concrete Circular Pier (철근콘크리트 원형 교각의 횡방향철근 변형률과 항복이후 콘크리트 전단저항 저감)

  • Ko, Seong Hyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.1
    • /
    • pp.147-157
    • /
    • 2018
  • The basis of capacity design has been explicitly or implicitly regulated in most bridge design specifications. It is to guarantee ductile failure of entire bridge system by preventing brittle failure of pier members and any other structural members until the columns provides fully enough plastic rotation capacity. Brittle shear is regarded as a mode of failure that should be avoided in reinforced concrete bridge pier design. To provide ductility behavior of column, the one of important factors is that flexural hinge of column must be detailed to ensure adequate and dependable shear strength and deformation capacity. Eight small scale circular reinforced concrete columns were tested under cyclic lateral load with 4.5 aspect ratio. The test variables are longitudinal steel ratio, transverse steel ratio, and axial load ratio. Eight flexurally dominated columns were tested. In all specimens, initial flexural-shear cracks occurred at 1.5% drift ratio. The multiple flexural-shear crack width and length gradually increased until the final stage. The angles of the major inclined cracks measured from the vertical column axis ranged between 42 and 48 degrees. In particular, this study focused on assessing transverse reinforcement contribution to the column shear strength. Transverse reinforcement contribution measured during test. Each three components of transverse reinforcement contribution, axial force contribution and concrete contribution were investigated and compared. It was assessed that the concrete stresses of all specimen were larger than stress limit of Korea Bridge Design Specifications.

Seismic Ductility of RC Circular Column-Bent Piers under Bidirectional Repeated Loadings (이축반복하중을 받는 2주형 철근콘크리트 교각의 내진 연성도)

  • Park Chang Kyu;LEE Bum Gi;Song Hee Won;Chung Young Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.692-695
    • /
    • 2004
  • Seismic performance of reinforced concrete(RC) column bent piers to bidirectional seismic loadings was investigated experimentally. RC column bent piers represent one of the most popular forms of piers used in highway bridges. Further to series of previous experimental researches for the performance of single bridge columns subjected to seismic loadings, four column bent piers were constructed in 400 mm diameter and 2,000 mm height. Each pier has two circular supporting columns. These piers were tested under lateral load reversals with axial load of $0.1f_{ck}A_g$. Bidirectional lateral loadings were applied. The test parameters included: different transverse reinforcement contents and lap-spliced longitudinal reinforcing steels. Test results indicate that lap-splices of longitudinal reinforcing steels have significantly influence on hysteretic response of column bent piers. Column capacity changed with the level of transverse confinement, and bidirectional repeated loadings induced more strength and stiffness degradation than unidirectional repeated loading.

  • PDF

Analytical evaluation of a modular CFT bridge pier according to directivity

  • Kim, Dongwook;Jeon, Chiho;Shim, Changsu
    • Steel and Composite Structures
    • /
    • v.20 no.6
    • /
    • pp.1193-1203
    • /
    • 2016
  • This paper focuses on the analytical behavior of modular circular concrete-filled tubular (CFT) column with enhanced bracing details. To design a full-scale bridge pier of multiple circular concrete-filled tubes, numerical analysis was used to evaluate structural performance according to load directivity. In previous research (Ma et al. 2012, Shim et al. 2014), low cycle fatigue failure at bracing joints was observed, so enhanced bracing details to prevent premature failure are proposed in this analysis. The main purpose of this research is to investigate seismic performance for the diagonal direction load without premature failure at the joints when the structure reaches the ultimate load. The ABAQUS finite-element software is used to evaluate experimental performance. A quasi-static loading condition on a modular bridge pier is introduced to investigate structural performance. The results obtained from the analysis are evaluated by comparing with load-displacement responses from experiments. The concrete-filled tubes with enhanced bracing details showed higher energy dissipation capacity and proper performance without connection failure for a diagonal load.

A Parameter Study of Internally Confined Hollow Reinforced Concrete Piers (내부 구속 중공 RC 교각의 매개변수 연구)

  • Choi, Jun-Ho;Yoon, Ki-Yong;Han, Taek-Hee;Kang, Young-Jong
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.4
    • /
    • pp.17-24
    • /
    • 2010
  • The hollow RC(Reinforced concrete) pier has the merit of lightweight pier compared with solid RC pier. However, the hollow RC pier shows a low ductile behavior due to brittle failure of inside concrete. To overcome this problem, the internally confined hollow reinforced concrete column has been developed. In this study, the behavior of internally confined hollow RC piers were evaluated with safety ratio, ductility, total material cost, the total weight of the pier, etc. The chosen parameters for the study are hollow ratio, thickness of internal steel tube, intervals between vertical re-bars, numbers of horizontal re-bars, and strength of concrete. As a result of parameters study, the usage of a minimum necessary thickness of the internal steel tube is the most effective.