• Title/Summary/Keyword: Pier Scour Depth

Search Result 57, Processing Time 0.022 seconds

A Study of the Local Scour Considering the Pier Shapes in the Cohesive Bed (점착성 하상에서의 교각형상에 따른 국부세굴 연구)

  • Choe, Gye-Un;Kim, Gi-Hyeong
    • Journal of Korea Water Resources Association
    • /
    • v.31 no.5
    • /
    • pp.539-552
    • /
    • 1998
  • When the pier is constructed in the cohesive be, the accuracy maynot be obtained because the equation for calculating the scour at piers is based upon the results which are analyzed through the experiments in the non-cohesive bed. In this paper, the variation of the depth of the pier scour occurred by constructing 5 types of pier in the channel having the cohesive material is examined. The experimental results are analyzed based upon Froude numbers and non-dimensional numbers which are indicated as the flow depths compared to the pier width. The results are also compared with the results obtained using the existing pier scour equations. In this paper, the shape factors, which can be used for calculating the scour depth of the pier in the cohesive channel bed, are suggested. The shape factors are indicated through the ratios between the scour depth at the circular pier and the scour depths at the different types of pier, and are suggested as two stages. In the first stage, in which the water depth compared to the pier width is less than 1.2, the shape factors are given as the equations. However, in the second stage the shape factors are given as the constant values. It is understood that the shape factors suggested in this paper can be properly usd for calculating local scour at piers in the bridges which are constructed in the cohesive channel bed having the characteristics of the bed material which is used in these experiments. Keywords : local scour, maximum scour depth, cohesive bed material, pier shape, pier, shape factor.

  • PDF

Pier Scour Prediction in Pressure Flow

  • Choi, Gye-Woon;Ahn, Sang-Jin;Kim, Jong-Sup
    • Korean Journal of Hydrosciences
    • /
    • v.6
    • /
    • pp.23-37
    • /
    • 1995
  • In this experimental paper, the maximum scour depth at pier was student. The model of the pier of San Gye bridge in the Bocheong stream was set for the experimental studies. Several model verification processes were conducted through the roughness comparisons between model and prototype, pursuing scour depth variations with time depending upon channel bed variation, the comparison of the ratios between falling velocities and shear velocities in the model and prototype, and the comparison of pier scour depths between experimental data and field measuring data. The experiments were conducted in the free flow conditions and pressure flow conditions. The maximum scour depth at piers in the pressure flow conditions is almost twice as much as compared to the free flow conditions. Also, the maximum scour depth variations are indicated in the figures based on the Froude numbers, opening ratios, water depths and approaching angles in the free surface flow conditions.

  • PDF

Predicting Scour at Bridge Piers

  • Briaud, Jean-Louis
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.03a
    • /
    • pp.3-46
    • /
    • 1999
  • A new method called SRICOS is proposed to predict the scour depth z versus time t around a cylindrical bridge pier of diameter D founded in clay. The steps involved are ; 1. taking samples at the bridge pier site, 2. testing them in an Erosion Function Apparatus called the EFA to obtain the scour rate z versus the hydraulic shear stress applied $\tau$, 3. predicting the maximum shear stress r max which will be induced around the pier by the water flowing at ν Ο before the scour hole starts to develop, 4. using the measured z versus r curve to obtain the initial scour rate zi corresponding to r max , 5. predicting the maximum depth of scour zmax for the pier, 6. using zi and zmarx to develop the hyperbolic function describing the scour depth z versus time t curve, and 7. reading the z vs. t curve at a time corresponding to the duration of the flood to find the scour depth which will develop around the pier. A new apparatus is developed to measure the z vs t curve of step 2, a series of advanced numerical simulations are performed to develop an equation for the $\tau$ max value of step 3, and a series of flume tests are performed to develop an equation for the zmax value of step 5. The method is evaluated by comparing predictions and measurements in 42 flume experiments.

  • PDF

Review of appropriateness of existing formula for estimating the depth of scour and the experimental study on development of the formula to estimated the depth of scour (기존 세굴심 산정식의 적정성 검토 및 세굴심 산정식 개발에 대한 실험적 연구세요)

  • Choi, Han-Kuy;Lee, Yeong-Seop
    • Journal of Industrial Technology
    • /
    • v.29 no.A
    • /
    • pp.67-75
    • /
    • 2009
  • In this study, the investigation of hydraulic characteristics and the pier data for the rivers in Youngseo area of Gangwon Province was carried out and the evaluation and comparison between the values from existing formulas and the values from the model tests was conducted, along with the statistical sensitivity analysis of the elements influencing the scour. As a result, the deviation between the values calculated from the existing formulas and the model tests appeared to be 1.09%~63.98% as the piers were getting larger, which indicated that the existing formulas were not appropriate to estimate the scour in the rivers in Gangwon area. And the formula which estimates the scour with the size of the pier only, among the existing ones, was far behind in estimating the sensitivity because of insufficient incorporation of the hydraulic characteristics, though it is convenient to estimate the value. The sensitivity analysis of the value from the model tests and the depth of the scour proved the significant impact on scour by the size of the pier and water depth, indicating 64% and 36%, respectively. In this study, the formula developed through the regression analysis performed based on the values from the model tests, which appeared to be appropriate for the rivers in Gangwon Province, was proposed.

  • PDF

Experimental Estimation of Shear Stresses at Pier-Front (교각전면부 하상재료의 입도분포에 따른 전단응력 산정에 관한 실험적 연구)

  • Park, Yoon Sung;Kang, Jun Ku;Yeo, Woon Kwang
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2004.05b
    • /
    • pp.429-433
    • /
    • 2004
  • According to researchers, the influential factors of scouring are generally divided into three factors: the flow conditions, the type and position of structures, and the characteristics of bed materials. In addition, scouring is affected by the 3-dimensional turbulent boundaries, the unsteady flow, the movement of sediment in the scour-hole area, the approach flow velocity and depth, the width of bridge foundation/pier, and the particle size of bed materials. However, it is difficult to estimate the scour depth near bridge piers when all conditions are factored in at once. Therefore, for reasonably accurate estimates of scour depth, it is essential to consider sufficiently the flow force and resisting force for scour. That is, to determine the shear stress concerning the bed material distribution is needed. In this study, the experiments were performed under the condition of a steady state of flow. As a result, scouring occurred at velocity ratios of 0.476,$(V/V_c=0.476)$, and the scour depth was increased linearly as the velocity ratio increased. in addition, the average values of shear stress ratio at zero scouring depth in both rectangular and circular piers were approximately 7$(\tau_c/\tau_{approach})$ and in the case for same size bed particle material. The results of this study can be used for the fundamental material for estimating the scour depth of bed materials.

  • PDF

Pier Scour Prediction in Pressure Flow (압력 변화를 고려한 교각 주위에서의 세굴현상 연구)

  • 안상진;최계운;김종섭;안창진
    • Water for future
    • /
    • v.27 no.2
    • /
    • pp.111-120
    • /
    • 1994
  • In this experimental research, the maximum scour depth at pier was studied. The model of the pier of San Gye bridge in the Bocheong stream was set for experimental pier scour studies. Several model verification processes were conducted through the roughness comparisons between model and prototype, pursuring scour depth variations with time depending upon channel bed variation, the comparison of the ratio between falling velocities and shear velocities in the model and prototype, and the comparison of pier scour between experimental data and field measuring data. The experiments were conducted in the free flow conditions and pressure flow conditions. The maximum scour depth at piers in the pressure flow conditions is twice as much as compared to the free flow conditions. Also, the maximum scour depth variations are indicated in the figures based on the Froude numbers, opening ratios, water depths and approaching angles in the free surface flow conditions.

  • PDF

Estimation of Local Scour at Piers Using Artificial Neural Network (인공신경망을 이용한 피어의 국부세굴 평가)

  • Park, Hyun-Il;Shin, Jong-Hyun
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.11
    • /
    • pp.17-24
    • /
    • 2008
  • It is known that scour at bridge piers is one of the leading causes of bridge failure. However, the mechanism of flow around a pier structure is so complicated that it is difficult to establish a general empirical model to provide accurate estimation for scour. Especially, each of the proposed empirical formula yields good results for a particular data set but can't show reliable predictability for various scouring data set. In this study, an alternative approach, that is, artificial neural networks (ANN), is proposed to estimate the local scour depth with numerous field data base. The local scour depth was modeled as a function of seven variables; pier shape, pier width, pier length, skew angle, stream velocity, water depth, $D_{50}$. 426 field data were used for the training and testing of ANN model. The predicted results showed that the neural network could provide a better alternative to the empirical equations.

A Experimental Study on the Depth of Scour to Formula Estimated of the Pattern Pier (원형 교각의 세굴심 산정식 개발에 대한 실험적 연구)

  • Baek, Kyung-Won;Park, Soo-Jin;Lee, Yeong-Seop;Choi, Han-Kuy
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.2
    • /
    • pp.83-90
    • /
    • 2010
  • This study was intended to compare and evaluate the value obtained from the existing formula for calculating the depth of scour and the valey from experimental model through the investigation of hydraulic characteristics and pier data in the area of rivers at Gangwon Province, and the sensitivity analysis, which is a statistical method, of the elements affecting the scour of the pier was carried out. As a result, a deviation between the values of existing formulas and experimental model reached about 1.09%$^{\circ}$63.98%, indicating that existing formula was found not to be appropriate at the rivers in Gangwon Province. A sensitivity analysis was carried out based on value obtained from experimental model and consequently, the elements affecting the scour were size of pier accounting for 64% and water depth accounting for 36%. Finally, a formula for calculating the scour of the pattern piers at the rivers in Gangwon Province was developed using the regression analysis.

Scour around Piers in the Stage Hydrograph (수위변화에 따른 교각주위에서의 세굴현상연구)

  • An, Sang-Jin;Yeon, Gi-Seok
    • Journal of Korea Water Resources Association
    • /
    • v.30 no.4
    • /
    • pp.335-346
    • /
    • 1997
  • This study aims at examining closely the scour around a pier due to irregular water stage changes during flood. At the Sangye bridge is located lowermost downstream of the Bocheong stream in the Kum River, the IHP experimental watershed. For this purpose, we have analyzed the change of scour depths due to stage hydrographs of experimental basin by a simulation. To examine the scour phenomenon around a pier due to irregular stage change in flood, we have analyzed the change of scour depth corresponding to stage hydrograph of field watershed after verification of model channel. From this study, the following conclusions are made: First, in case of predicting the maximum scour depth around a pier with stage hydrograph in the state of steady flow, we should choose the highest stage. Second, after increasing the stage, the equilibrium scour depth became smaller than the maximum scour depth. Therefore, in case of estimating the maximum scour depth in rivers, it is recommended that we should consider additional scour depth with is reduced by infilling the sediments.

  • PDF

Experimental Study for Protection of Local Scouring around Bridge Pier in a Curved Channel (만곡부에 위치한 교각주위의 국부세굴 보호공에 관한 실험적 연구)

  • Choe, In-Ho;Park, Yeong-Jin;Song, Jae-Woo
    • Journal of Korea Water Resources Association
    • /
    • v.31 no.3
    • /
    • pp.269-277
    • /
    • 1998
  • Laboratory flume experiments to investigate the characteristics of the flows and local scour around circular bridge pier in a curved channel are performed. In this study, the effect of a circular collar device for controlling the depth of scour is examined. The scour depth with a collar is about 40% of the scour depth without collar in the straight course of the flume while it is about 44% of the scour depth without collar at the location of 150' in the curved channel. As the results of experiments using the collar of which diameter is twice of pier, the reduction of scour depth is the most effective in a straight channel when the location of collar is 0.2h( h:depth) below the channel bottom. And, the reduction of scour depth is the most effective in a curved channel when the location of collar is 0.1h below the channel bottom.

  • PDF