• Title/Summary/Keyword: Pick-up belt

Search Result 4, Processing Time 0.019 seconds

Development of a Belt Pick-up One-row Soybean Cutter (벨트 파지식 1조 콩 예취기 개발)

  • Jun, Hyeon-Jong;Kang, Tae-Gyoung;Lee, Choung-Keun;Choi, Yong;Lee, Chai-Sik;Hong, Jong-Tae
    • Journal of Biosystems Engineering
    • /
    • v.35 no.6
    • /
    • pp.373-379
    • /
    • 2010
  • This study was carried out to develop a belt pick-up type one-row soybean cutter, using physical properties and production conditions of soybeans. The prototype soybean cutter consisted of 4 parts: cutting part, conveying part, collecting part, and travelling part. The prototype soybean cutter was designed to cut soybeans planted with a row spacing of 600 mm, and at a height of 30 mm from the bed bottom using a disk saw. Through various trials with different peripheral velocities of the disk saw and forward speed of the cutter, determined ranges of the peripheral velocity of the disk saw cutting soybeans stems were greater than 18.3 m/s. Spacing between pick-up belts (clearance) was in a range of 60~90 mm so that soybeans could be picked at heights greater than 25 cm, and the size and shape of the pick-up belt were determined the conventional manual harvesting method. The optimal ratio between the forward speed of cutter and the peripheral speed of pick-up belts were from 1 to 1.2 by theoretical analysis. the pick-up belts had a $35^{\circ}$ of tilted angle and $90^{\circ}$ of twisted angle to pick up soybeans safely from the plant input to the lower end of the belts and convey soybeans to the upper end of belts nearby a container. The soybeans at the rear container were dropped down on the soybean row with an interval. The effective field capacity of the prototype soybean cutter was 0.136 ha/h, reducing the working hour by 92% when compared with the manual cutting.

Thermosol Dyeing of Industrial Polyester Belt (산업용 Polyester Belt의 서머졸 염색)

  • 김호정;이문철
    • Textile Coloration and Finishing
    • /
    • v.11 no.3
    • /
    • pp.9-14
    • /
    • 1999
  • To investigate the effect of dyeing conditions, such as pick-up rate, dye concentration, time and temperature in thermosol dyeing on the dyeability of industrial polyester belt, dye uptake and rubbing fastness were measured. The dye uptake was increased with the increase of pick-up rate, dye concentration, dyeing time and temperature. The high rubbing fastness(class 5) for polyester belt dyed with Cibacet Blue F3R at the various conditions was obtained.

  • PDF

Cutting and Conveying Characteristics for Development of Chinese Leek Harvester (부추 수확기 개발을 위한 예취 및 이송특성 구명)

  • Jun H. J.;Kim S. H.;Hong J. T.;Choi Y.
    • Journal of Biosystems Engineering
    • /
    • v.30 no.4 s.111
    • /
    • pp.220-228
    • /
    • 2005
  • This study was conducted to investigate the main factors that contain a rotating velocity ratio between wheel and conveyor belt, a tilt angle of conveyor belt and a rotating velocity of a dick cutter for mechanization of Chinese leek harvest. In the survey on the cultivation of Chinese leek, row spacing of 350 m and cutting height of 10 mm from the ground were set up for field tests. Test equipment was designed to cut, pick up and convey Chinese leek one row by one row. From the results of material tests, pick-up height of conveyor belt was set up at $60\~90m$ from the bottom, and the strain and stress at rupture of Chinese leek was 0.487 m/m and 0.01078 MPa. An elastic coefficient of the rubber (Neoprene) of conveyor belts was 1.1077 under the strain of 0.3 nym. from the results of field tests, the tilt angle of conveyor belt was the range of $25^{\circ}\~30^{\circ}$ under consideration far space of container, the velocity ratio between vehicle and conveying belt was 1 to 2.4~1.7 at 0.1~0.3 m/s of vehicle, and optimum rotating velocity of the disk cutter was 34.8 m/s or more under consideration for soil friction.

Development of a Belt Pick-up Type Two-row Sesame Reaper

  • Jun, Hyeon-Jong;Choi, Il-su;Kang, Tae-Gyoung;Kim, Young-Keun;Lee, Sang-Hee;Kim, Sung-Woo;Choi, Yong;Choi, Duck-Kyu;Lee, Choung-Keun
    • Journal of Biosystems Engineering
    • /
    • v.41 no.4
    • /
    • pp.281-287
    • /
    • 2016
  • Purpose: The purpose of this study is to develop a walking-type two-row sesame reaper, which can simultaneously perform the cutting and collecting of sesame plants and other crops like perilla and soybean. Methods: The factors involved in reaping sesame were determined experimentally in order to design a prototype of the sesame reaper. The prototype is made up of four parts for cutting, conveying, collecting, and running. The height of two disc-plate saw blades on the cutting part is adjusted by an adjusting wheel, and peripheral speed is adjusted in accordance with the running speed. The conveying belt of the conveying part can be tilted from $0^{\circ}$ to $90^{\circ}$. The collecting part extracts a predetermined amount of transferred sesame plants. The prototype was used to evaluate the performance at different working speeds, so that the work efficiency can be calculated. Results: The center of gravity of the sesame plants was 900 mm, measured from the end of the cut stem. The diameter of the disc-plate saw blade was determined to be 355 mm, peripheral speed was 20.4-32.7 m/s, and the picking height of the conveying belt for sesame was 130 mm. The performance of transfer and collection of the sesame, when the insertion angles were $60^{\circ}$ and $90^{\circ}$, proved to be excellent. However, when the angle was over $120^{\circ}$, the performance was only 75-80%. The performance was at 100% efficiency when the ratio between running speed and conveying belt speed of the prototype was 1:2, which seems to be the ideal ratio for the sesame reaper. Conclusions: A sesame reaper was developed, which can integrate the processes of cutting, conveying, and collecting, by investigating and considering various factors involved in the reaping process. The sesame reaper can reduce the costs for yielding and producing sesame due to its highly efficient performance.