• 제목/요약/키워드: Pi genes

검색결과 167건 처리시간 0.038초

Dexamethasone으로 유도한 근위축 세포모델에서 흑효모 배양물 유래 polycan의 근위축 개선에 대한 효과 (Effects of polysaccharide (polycan) derived from black yeast in dexamethasone-induced muscle atrophy cell model)

  • 황수진;임종민;구본화;천다미;정유진;김영숙;오태우
    • 대한한의학방제학회지
    • /
    • 제29권1호
    • /
    • pp.45-55
    • /
    • 2021
  • Objectives : This study was conducted to evaluate the anti-atrophic effect of polycan in dexamethasone-induced skeletal muscle atrophy in vitro model. Methods : C2C12 myoblast were differentiated into myotube by 2% horese serum medium for 6 days, and then treated polycan extract at different concentrations for 24h. The effect of dexamethasone on the induction of muscle atrophy and expression of atrophy-related genes in differentiated C2C12 myotubes using a GSH, ROS, real-time PCR, western blots analysis. Results : The results showed that Treatment with polycan (100 and 200 ㎍/㎖) noncytotoxic levels on both myoblast and myotube. Polycan decreased the ROS level overproduced with dexamethasone and improved the depletion of GSH level. Dexamethasone showed a decrease in myotube diameter, which was associated with up-regulation muscle-specific ubiquitin ligases markers, such as atrogin-1, FoxO3, myostatin and muscle RING finger-1 (MuRF1), and down-regulation of myogenin, MEF2, Myogenic regulatory factor 5, 6 and MyoD. The results showed that polycan treatment significantly dose-dependently inhibited it. Furthermore, decreased expressions of PI3K/Akt signal pathway by dexamethasone were reversed by treatment with polycan. Conclusions : Thus, polycan suppresses dexamethasone induced muscle atrophy in C2C12 myotube in vitro model through activation of PI3K/Akt pathway and protective effect of improve skeletal muscle function.

Diversity of vir Genes in Plasmodium vivax from Endemic Regions in the Republic of Korea: an Initial Evaluation

  • Son, Ui-han;Dinzouna-Boutamba, Sylvatrie-Danne;Lee, Sanghyun;Yun, Hae Soo;Kim, Jung-Yeon;Joo, So-Young;Jeong, Sookwan;Rhee, Man Hee;Hong, Yeonchul;Chung, Dong-Il;Kwak, Dongmi;Goo, Youn-Kyoung
    • Parasites, Hosts and Diseases
    • /
    • 제55권2호
    • /
    • pp.149-158
    • /
    • 2017
  • Variant surface antigens (VSAs) encoded by pir families are considered to be the key proteins used by many Plasmodium spp. to escape the host immune system by antigenic variation. This attribute of VSAs is a critical issue in the development of a novel vaccine. In this regard, a population genetic study of vir genes from Plasmodium vivax was performed in the Republic of Korea (ROK). Eighty-five venous blood samples and 4 of the vir genes, namely vir 27, vir 21, vir 12, and vir 4, were selected for study. The number of segregating sites (S), number of haplotypes (H), haplotype diversity (Hd), DNA diversity (${\pi}$ and ${\Theta}_w$), and Tajima's D test value were conducted. Phylogenetic trees of each gene were constructed. The vir 21 (S=143, H=22, Hd=0.827) was the most genetically diverse gene, and the vir 4 (S=6, H=4, Hd=0.556) was the opposite one. Tajima's D values for vir 27 (1.08530, P>0.1), vir 12 (2.89007, P<0.01), and vir 21 (0.40782, P>0.1) were positive, and that of vir 4 (-1.32162, P>0.1) was negative. All phylogenetic trees showed 2 clades with no particular branching according to the geographical differences and cluster. This study is the first survey on the vir genes in ROK, providing information on the genetic level. The sample sequences from vir 4 showed a clear difference to the Sal-1 reference gene sequence, whereas they were very similar to those from Indian isolates.

In vivo Pharmacokinetics, Activation of MAPK Signaling and Induction of Phase II/III Drug Metabolizing Enzymes/Transporters by Cancer Chemopreventive Compound BHA in the Mice

  • Hu, Rong;Shen, Guoxiang;Yerramilli, Usha Rao;Lin, Wen;Xu, Changjiang;Nair, Sujit;Kong, Ah-Ng Tony
    • Archives of Pharmacal Research
    • /
    • 제29권10호
    • /
    • pp.911-920
    • /
    • 2006
  • Phenolic antioxidant butylated hydroxyanisole (BHA) is a commonly used food preservative with broad biological activities, including protection against chemical-induced carcinogenesis, acute toxicity of chemicals, modulation of macromolecule synthesis and immune response, induction of phase II detoxifying enzymes, as well as its undesirable potential tumor-promoting activities. Understanding the molecular basis underlying these diverse biological actions of BHA is thus of great importance. Here we studied the pharmacokinetics, activation of signaling kinases and induction of phase II/III drug metabolizing enzymes/transporter gene expression by BHA in the mice. The peak plasma concentration of BHA achieved in our current study after oral administration of 200 mg/kg BHA was around $10\;{\mu}M$. This in vivo concentration might offer some insights for the many in vitro cell culture studies on signal transduction and induction of phase II genes using similar concentrations. The oral bioavailability (F) of BHA was about 43% in the mice. In the mouse liver, BHA induced the expression of phase II genes including NQO-1, HO-1, ${\gamma}-GCS$, GST-pi and UGT 1A6, as well as some of the phase III transporter genes, such as MRP1 and Slco1b2. In addition, BHA activated distinct mitogen-activated protein kinases (MAPKs), c-Jun N-terminal kinase (JNK), extracellular signal-regulated protein kinase (ERK), as well as p38, suggesting that the MAPK pathways may play an important role in early signaling events leading to the regulation of gene expression including phase II drug metabolizing and some phase III drug transporter genes. This is the first study to demonstrate the in vivo pharmacokinetics of BHA, the in vivo activation of MAPK signaling proteins, as well as the in vivo induction of Phase II/III drug metabolizing enzymes/transporters in the mouse livers.

마우스세포주 Balb/c 3T3 A31-1-1에서 Epigallocatechin gallate(EGCG)의 세포암화 억제효과에 대한 유전자발현 해석 (Genome-based Gene Expression Analysis of EGCG-mediated Cell Transformation Suppression Effect in Mouse Cell line Balb/c 3T3 A31-1-1)

  • 정기경;서수경;김태균;박문숙;이우선;박순희;김승희;정해관
    • 한국환경성돌연변이발암원학회지
    • /
    • 제26권4호
    • /
    • pp.125-132
    • /
    • 2006
  • Previous studies showed that epigallocatechin gallate(EGCG) have substantial effects of suppressing the N-methyl-N'-nitro-N-nitrosoguanidine(MNNG)-initiated cell transformation process on the bases of foci formation frequency and loss of anchorage dependency. In this study we tried to clarify the molecular mechanism of suppressing the cell transformation process. Mouse cell line balb/c 3T3 A31-1-1 was exposed 2 days to MNNG followed by 15 days 12-O-tetradecanoylphorbol-13-acetate(TPA) treatment for our transformation process. EGCG was added after the time point of 24 hours exposure to TPA and incubated for 19 days. 2029 genes were selected in our transformation process that showed fold change value of 1.5 or more in the microarray gene expression analysis covering the mouse full genome. These genes were found to be involved mainly in the cell cycle pathway, focal adhesion, adherens junction, TGE-$\beta$ signaling, apoptosis, lysine degradation, insulin signaling, ECM-receptor interaction. Among the genes, we focused on the 631 genes(FC>0.5) reciprocally affected by EGCG treatment. Our study suggest that EGCG down-regulate the gene expressions of up stream signaling factors such as nemo like kinase with MAPK activity and PI3-Kinase, Ras GTPase and down stream factors such as cyclin D1, D2, H, T2, cdk6.

  • PDF

SNU-16 위암 세포주에서 p-coumaric acid의 세포성장 억제 효과 (Anti-proliferative Properties of p-Coumaric Acid in SNU-16 Gastric Cancer Cells)

  • 장미경;고희철;김세재
    • 생명과학회지
    • /
    • 제29권7호
    • /
    • pp.809-816
    • /
    • 2019
  • p-Coumaric acid (p-CA)는 항산화 및 항염 활성을 가진 식물계에서 가장 풍부한 식물화학물질이다. 그러나 위암세주포에서 p-CA의 항암 활성과 전사체 발현에 대한 연구는 아직까지 수행된 바 없다. 본 연구에서는 SNU-16 위암세포에서 p-CA에 의한 세포 증식 억제 및 전사체 프로파일에 미치는 영향을 조사하였다. p-CA는 세포사멸 단백질 발현을 조절하여 SNU-16 세포에서의 세포사멸을 유도하였다. RNA-seq 분석을 사용하여 p-CA처리에 의해 SNU-16 세포에서 차별적으로 발현된 유전자(DEGs)를 동정하였다. DEGs들의 gene ontology (GO) 술어로 유전자 산물을 검색한 결과, 주로 염증반응, 세포사멸 과정, 세포주기 및 면역 반응에 관여하는 생물학적 과정에 관여하는 것으로 나타났다. 또한, KEGG 경로분석 결과, p-CA는 주로 PI3K-Akt 와 암 신호전달 경로에 변화를 유발하였다. 본 연구결과는 p-CA가 세포증식과 암 신호 전달 경로에 관여하는 유전자 발현을 조절함으로써 위암 예방 효과를 나타낼 수 있음을 시사한다.

항암제 내성 L1210세포의 Glutathione 대사 관련효소 유전자의 발현 양상 (Gene Expression of Enzymes Related to Glutathione Metabolism in Anticancer Drug-resistant L1210 Sublines)

  • 김성용;김재룡;김정희
    • Journal of Yeungnam Medical Science
    • /
    • 제12권1호
    • /
    • pp.32-47
    • /
    • 1995
  • 생쥐의 백혈병세포 L1210과 항암제에 대하여 내성이 유도된 L1210AdR, L1210VcR과 L1210Cis에서 glutathione의 농도와 glutathione의 합성 조절에 관여하는 ${\gamma}$-glutamylcysteine synthetase(GCS)와 ${\gamma}$-glutamyl transpeptidase (GGT), 세포 이물질을 축합하는데 촉매하는 glutathione S-transferase(GST)의 효소 활성도와 유전자의 발현 여부를 관찰하였다. 세포내 glutathione농도(${\mu}M/mg$ protein)는 L1210이 $0.41{\pm}0.003$, L1210AdR가 $0.73{\pm}0.006$, L1210VcR은 $1.16{\pm}0.060$, L1210Cis가 $2.19{\pm}0.282$으로 모세포에 비하여 내성세포에서 통계적으로 유의한 증가를 관찰하였다. Buthionine sulfoxamine(BSO)를 1 ${\mu}M$농도로 첨가하여 12시간 배양한 세포들에서의 glutathione농도는 L1210이 88%, L1210AdR가 85%, L1210VcR이 89%, 그리고 L1210Cis는 79%의 감소를 보였다. GCS의 활성도(nM/mg protein/min)는 L1210이 104인데 비하여 L1210AdR가 128, L1210VcR는 227, 및 L1210Cis는 212로 증가하였다. GGT의 활성도(nM/mg protein/min)는 L1210이 $2.15{\pm}0.531$이었고, L1210AdR은 $2.80{\pm}0.498$, L1210VcR은 $2.42{\pm}0.389$, 그리고 L1210Cis는 $2.98{\pm}0.623$으로 내성인 세포들에서 증가하였으며 L1210AdR과 L1210Cis에서 유의하였다. GST활성도(nM/mg protein/min)는 L1210이 $16.70{\pm}4.798$이었고, L1210AdR은 $14.51{\pm}3.402$, L1210VcR은 $19.52{\pm}4.255$, L1210Cis $17.77{\pm}4.495$로 L1210VcR과 L1210Cis가 약간의 증가를 보였으며, L1210AdR은 오히려 감소를 보였다. DNA의 slot blot에서 GCS, GGT, GST 유전자의 모세포와 내성세포간에 별다른 차이를 보이지 않았다. Northern hybridization에서 GCS는 약 4.5kb 크기의 band, GST-${\pi}$는 약 1.05kb 크기의 band를 보였으며 내성세포 모두에서 발현 증가가 관찰되었다. GGT의 경우 크기가 다른 6개의 band가 보였으며 특히 11.5 kb크기의 band에서 L1210AdR과 L1 210VcR의 발현이 증가하였으며, L1210VcR에서는 L1210과 다른 내성세포에서 보이는 1.95kb크기의 band가 보이지 않고 2.2kb 크기의 다른 band가 관찰되었다. 이상에서 L1210AdR과 L1210VcR의 내성에는 mdr1 유전자가 관여하고, L1210Cis의 내성에는 특히 glutathione이 중요하다. GCS, GGT 및 GST등의 활성도 및 유전자의 발현도 내성세포들에서 증가하였으며 이중 GCS는 내성세포내의 glutathione 합성에 가장 중요한 조절인자라 할 수 있다.

  • PDF

cDNA Microarray Analysis of Phytophthora Resistance Related Genes Isolated from Pepper

  • Kim, Hyounjoung;Lee, Mi-Yeon;Kim, Ukjo;Lee, Sanghyeob;Park, Soon-Ho;Her, Nam-Han;Lee, Jing-Ha;Yang, Seung-Gyun;Harn, Chee-Hark
    • 한국식물병리학회:학술대회논문집
    • /
    • 한국식물병리학회 2003년도 정기총회 및 추계학술발표회
    • /
    • pp.67.1-67
    • /
    • 2003
  • Phytophthora blight is a devastating disease of pepper and occurs almost anywhere peppers are grown. Phytophthora blight is caused by Phytophthora capsici and this pathogen can infect every part of the plant by moving inoculum in the soil, by infecting water on surface, by aerial dispersal to sporulating lesions. Management of Phytophthora blight currently relies on cultural practices, crop rotation, and use of selective fungicides. Since these treatments are a short-term management, a classical breeding for development of resistant pepper against the Phytophthora is an alternative. So far some of the resistant cultivars have been on the market, but those are limited regionally and commercially. Therefore, ultimately an elite line resistant against this disease should be developed, if possible, by biotechnology. We have set out a series of work recently in order to develop Phytophthora resistant pepper cultivar. For the first time, the cDNA microarray analysis was peformed using an EST chip that holds around 5000 pepper EST clones to identify genes responsive to Phytophthora infection. Total RNA samples were obtained from Capsicum annuum PI201234 after inoculating P. capsici to roots and soil and exposed to the chip. .Around 900 EST clones were up-regulated and down-regulated depending on the two RNA sample tissues, leaf and root. From those, we have found 55 transcription factors that may be involved in gene regulation of the disease defense mechanism. Further and in detail information will be provided in the poster.

  • PDF

Multiple Linkage Disequilibrium Mapping Methods to Validate Additive Quantitative Trait Loci in Korean Native Cattle (Hanwoo)

  • Li, Yi;Kim, Jong-Joo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제28권7호
    • /
    • pp.926-935
    • /
    • 2015
  • The efficiency of genome-wide association analysis (GWAS) depends on power of detection for quantitative trait loci (QTL) and precision for QTL mapping. In this study, three different strategies for GWAS were applied to detect QTL for carcass quality traits in the Korean cattle, Hanwoo; a linkage disequilibrium single locus regression method (LDRM), a combined linkage and linkage disequilibrium analysis (LDLA) and a $BayesC{\pi}$ approach. The phenotypes of 486 steers were collected for weaning weight (WWT), yearling weight (YWT), carcass weight (CWT), backfat thickness (BFT), longissimus dorsi muscle area, and marbling score (Marb). Also the genotype data for the steers and their sires were scored with the Illumina bovine 50K single nucleotide polymorphism (SNP) chips. For the two former GWAS methods, threshold values were set at false discovery rate <0.01 on a chromosome-wide level, while a cut-off threshold value was set in the latter model, such that the top five windows, each of which comprised 10 adjacent SNPs, were chosen with significant variation for the phenotype. Four major additive QTL from these three methods had high concordance found in 64.1 to 64.9Mb for Bos taurus autosome (BTA) 7 for WWT, 24.3 to 25.4Mb for BTA14 for CWT, 0.5 to 1.5Mb for BTA6 for BFT and 26.3 to 33.4Mb for BTA29 for BFT. Several candidate genes (i.e. glutamate receptor, ionotropic, ampa 1 [GRIA1], family with sequence similarity 110, member B [FAM110B], and thymocyte selection-associated high mobility group box [TOX]) may be identified close to these QTL. Our result suggests that the use of different linkage disequilibrium mapping approaches can provide more reliable chromosome regions to further pinpoint DNA makers or causative genes in these regions.

돼지 전염성 위장염 바이러스(국내분리주)의 분자생물학적 특성 규명 (Molecular biological characterization of transmissible gastroenteritis viruses isolated in Korea)

  • 권혁무;피재호
    • 대한수의학회지
    • /
    • 제38권2호
    • /
    • pp.304-313
    • /
    • 1998
  • Sixteen Korean field transmissible gastroenteritis viruses (TGEVs) were isolated using swine testicular cell (STC) and the genomic diversity of them was analyzed. All TGEV isolates produced a typical cytopathic effect in STC and were confirmed as TGEV by immunofluorescence assay using monoclonal antibody against TGEV and PCR using TGEV specific primers. RNAs from TGEV field isolates and vaccine TGEV were extracted and amplified by RT and PCR. The RT-PCR products were digested with selected restriction enzymes and analyzed RFLP patterns. The N-terminal end region of S gene and ORF 3 and 3-1 genes of TGEV amplified by TGEV specific primer pairs seemed to be conserved. Most specific variations were detected in S gene amplified by TGEV 4/6 primer pairs which includes antigenic sites A and D. When the PCR products were treated with Sau3AI and Ssp I, Bvac(vaccine strain), field isolates 133 and 347 were differentiated from Miller and Purdue types. In the case of D5 field isolates, it was classified into Purdue type by Sau 3AI but classified into independent TGEV by Ssp I. Two different TGEV strains from D2 sample were confirmed by plaque purification and RT-PCR-RFLP analysis. To investigate the change occurring in TGEV genome after serial passage, the TGEV P44 strain was passaged through STC. There were specific changes in S gene and a large deletion was observed in ORF 3 and 3-1 genes. These studies showed that a distinct difference in genome exists among TGEV field isolates.

  • PDF

Identification of DC21 as a Novel Target Gene Counter-regulated by IL-12 and IL-4

  • Kong, Kyoung-Ah;Jang, Ji-Young;Lee, Choong-Eun
    • BMB Reports
    • /
    • 제35권6호
    • /
    • pp.623-628
    • /
    • 2002
  • The Th1 vs. Th2 balance is critical for the maintenance of immune homeostasis. Therefore, the genes that are selectively-regulated by the Th1 and Th2 cytokines are likely to play an important role in the Th1 and Th2 immune responses. In order to search for and identify the novel target genes that are differentially regulated by the Th1/Th2 cytokines, the human PBMC mRNAs differentially expressed upon the stimulation with IL-4 or IL-12, were screened by employing the differential display-polymerase chain reaction. Among a number of clones selected, DC21 was identified as a novel target gene that is regulated by IL-4 and IL-12. The DC21 gene expression was up-regulated either by IL-4 or IL-12, yet counter-regulated by co-treatment with IL-4 and IL-12. DC21 is a dendritic cell protein with an unknown function. The sequence analysis and conserved-domain search revealed that it has two AU-rich motifs in the 3'UTR, which is a target site for the regulation of mRNA stability by cytokines, and that it belongs to the N-acetyltransferase family. The induction of DC21 by IL-12 peaked around 8-12 h, and lasted until 24 h. LY294002 and SB203580 significantly suppressed the IL-12-induced DC21 gene expression, which implies that PI3K and p38/JNK are involved in the IL-12 signal transduction pathway that leads to the DC21 expression. Furthermore, tissue blot data indicated that DC21 is highly expressed in tissues with specialized-resident macrophages, such as the lung, liver, kidney, and placenta. Together, these data suggest a possible role for DC21 in the differentiation and maturation of dendritic cells regulated by IL-4 and IL-12.