• Title/Summary/Keyword: Phytotoxicity

Search Result 306, Processing Time 0.028 seconds

Fungichromin Production by Streptomyces padanus PMS-702 for Controlling Cucumber Downy Mildew

  • Fan, Ya-Ting;Chung, Kuang-Ren;Huang, Jenn-Wen
    • The Plant Pathology Journal
    • /
    • v.35 no.4
    • /
    • pp.341-350
    • /
    • 2019
  • Streptomyces padanus PMS-702 strain produces a polyene macrolide antibiotic fungichromin and displays antagonistic activities against many phytopathogenic fungi. In the present study, experimental formulations were assessed to improve the production of fungichromin, the efficacy of PMS-702 on the suppression of sporangial germination, and the reduction of cucumber downy mildew caused by Pseudoperonospora cubensis. PMS-702 strain cultured in a soybean meal-glucose (SMG) medium led to low levels of fungichromin accumulation and sporangial germination suppression. Increasing medium compositions and adding plant oils (noticeably coconut oil) in SMG significantly increased fungichromin production from 68 to $1,999.6{\mu}g/ml$. Microscopic examination reveals that the resultant suspensions significantly reduced sporangial germination and caused cytoplasmic aggregation. Greenhouse trials reveal that the application of PMS-702 cultural suspensions reduced downy mildew severity considerably. The addition of Tween 80 into the synthetic medium while culturing PMS-702 further increased the suppressive efficacy of downy mildew severity, particularly when applied at 24 h before inoculation or co-applied with inoculum. Fungichromin at $50{\mu}g/ml$ induced phytotoxicity showing minor necrosis surrounded with light yellowish halos on cucumber leaves. The concentration that leads to 90% inhibition (IC90) of sporangial germination was estimated to be around $10{\mu}g/ml$. The results provide a strong possibility of using the S. padanus PMS-702 strain as a biocontrol agent to control other plant pathogens.

Biological Control of Oomycete Soilborne Diseases Caused by Phytophthora capsici, Phytophthora infestans, and Phytophthora nicotianae in Solanaceous Crops

  • Elena Volynchikova;Ki Deok Kim
    • Mycobiology
    • /
    • v.50 no.5
    • /
    • pp.269-293
    • /
    • 2022
  • Oomycete pathogens that belong to the genus Phytophthora cause devastating diseases in solanaceous crops such as pepper, potato, and tobacco, resulting in crop production losses worldwide. Although the application of fungicides efficiently controls these diseases, it has been shown to trigger negative side effects such as environmental pollution, phytotoxicity, and fungicide resistance in plant pathogens. Therefore, biological control of Phytophthora-induced diseases was proposed as an environmentally sound alternative to conventional chemical control. In this review, progress on biological control of the soilborne oomycete plant pathogens, Phytophthora capsici, Phytophthora infestans, and Phytophthora nicotianae, infecting pepper, potato, and tobacco is described. Bacterial (e.g., Acinetobacter, Bacillus, Chryseobacterium, Paenibacillus, Pseudomonas, and Streptomyces) and fungal (e.g., Trichoderma and arbuscular mycorrhizal fungi) agents, and yeasts (e.g., Aureobasidium, Curvibasidium, and Metschnikowia) have been reported as successful biocontrol agents of Phytophthora pathogens. These microorganisms antagonize Phytophthora spp. via antimicrobial compounds with inhibitory activities against mycelial growth, sporulation, and zoospore germination. They also trigger plant immunity-inducing systemic resistance via several pathways, resulting in enhanced defense responses in their hosts. Along with plant protection, some of the microorganisms promote plant growth, thereby enhancing their beneficial relations with host plants. Although the beneficial effects of the biocontrol microorganisms are acceptable, single applications of antagonistic microorganisms tend to lack consistent efficacy compared with chemical analogues. Therefore, strategies to improve the biocontrol performance of these prominent antagonists are also discussed in this review.

Effects of plant preservative mixtureTM on in vitro germination of Dendrobium thyrsiflorum Rchb.f. and its application in orchid conservation

  • Tran Trung Chanh;Nguyen Tan Huy;Nguyen Thu Ha;Khanh Le;Nguyen Huu Hoang
    • Journal of Plant Biotechnology
    • /
    • v.50
    • /
    • pp.108-114
    • /
    • 2023
  • In vitro conservation is one of the most effective strategies for rare plant protection, especially for orchid species. To maximize the success rates of in vitro explant establishment (stage I) in conservation programs, the application of tissue culture additives such as Plant Preservative MixtureTM (PPMTM) should be emphasized. In this study, we used Dendrobium thyrsiflorum Rchb.f. (1875) seeds and seedlings as a model for the evaluation of PPMTM's phytotoxicity in the meristematic tissues of epiphytic orchids. PPMTM had no observable inhibitory effect on protocorm, shoot, or root development when it was supplemented at 0.1%. PPMTM supplementation caused adverse effects on D. thyrsiflorum explants at concentrations > 0.2%. At high concentrations, young in vitro seedlings showed damage, especially at the root tissue level. Based on this model, supplementation of 0.1-0.2% PPMTM to culture media was successfully implemented to establish in vitro cultures of other rare orchid species in our conservation program.

Antagonistic Interaction between Quinclorac and Bensulfuron-methyl on Growth of the Rice Plants (Quinclorac과 Bensulfuron-methyl의 혼합처리(混合處理)에서 벼의 생장(生長)에 대한 제초제간(除草劑間) 길항작용(拮抗作用))

  • Kwon, Oh-Yeon;Kwon, Yong-Woong
    • Korean Journal of Weed Science
    • /
    • v.17 no.3
    • /
    • pp.288-294
    • /
    • 1997
  • Field and pot expeiments were carried out to evaluate the interaction between quinclorac and bensulfuron-methyl on growth of the rice plants(Oryza sativa L. cv. Choocheongbyeo) at 20, 45, 65 days-old stages. Quinclorac and bensulfuron-methyl showed antagonistic interaction at both stages, which were detected by the Chisaka's method at isobles of 10% growth inhibition. The antagonism indices were -0.63 and -1.67 at 20 and 65 days-old seedling stages, respectively. Leaf-rolling of rice occurred when quinclorac was applied at 600g ai/ha or more at 20 days-old seedling stage, while it occured at the dose of 900g ai/ha at 65 days-old stage. Bensulfuron-methyl reduced plant height and dry weight as well as tiller production at both stages. Leaf-rolling of rice was reduced when mixture of quinclorac and bensulfuron-methyl was applied due to antagonism of the two herbicides. High temperatures increased the phytotoxicity of bensulfuron-methyl, while the phytotoxicity caused by quinclorac alone was not responsive to temperature. The antagonistic effect between quinclorac and bensulfuron-methyl increased at low temperature as tested by the Colby's method.

  • PDF

Characterization of Bacteria Isolated from Pine Wood Nematodes in Korea (국내 소나무재선충에서 분리한 세균의 특성)

  • Seo, Sang-Tae;Moon, Yil-Seong
    • Research in Plant Disease
    • /
    • v.18 no.4
    • /
    • pp.376-380
    • /
    • 2012
  • A survey of bacterial species associated with Korean isolates of pine wood nematode (PWN) was performed. A total of 110 bacterial isolates were obtained from the PWN isolates that were previously isolated from Pinus densiflora and P. koraiensis. Among the bacterial isolates, Cedecea neteri was most frequent (64 isolates) followed by Ewingella americana (21 isolates), Pseudomonas sp. (15 isolates), Flavobacterium sp. (8 isolates) and Rahnella aquatilis (2 isolates). Both E. americana and Pseudomonas sp. which are assumed to be closely associated with PWN were examined for their phytotoxicity to P. thunbergii seedlings. Ethyl acetate extracts of Psuedomonas sp. (Ba2 strain) cultures were found to induce wilting and mortality in the tested seedlings. The three bacterial species, Pseudomonas sp. (Ba2 strain), E. ameircana (Ba4 strain) and C. neteri (Ba10 strain) were examined in vitro for their sensitivity to 21 kinds of antibiotics. All of the strains were highly susceptible to carbenicillin, doxcycline and tetracycline.

Studies on the development of seed disinfectant in non-mercurious compounds (비유기수은 종자소독제개발에 관한 연구)

  • Lee Du-Hyung
    • Korean journal of applied entomology
    • /
    • v.18 no.2 s.39
    • /
    • pp.63-71
    • /
    • 1979
  • Tests were made to find new non-mercurious seed disinfectants that were best for rice seeds. For these experiments four seed samples carr)?ing natural infection of Pyricularia oryzae, Helminthosporium oryzae, and Fusarium moniliforme were used and the following fungicides were used; Zinc Omadine, Sodium Omadine, Panoctine, Tecto-F, Benlate-T, Homai, Sisthane, $P_{242}$, Busan 30, Tecto-Wp and Terracoat Zn. Blotter method and water agar plate method used in the laboratory and growing-on test used in greenhouse. Results have shown that Sisthane, $P_{242}$ and Sodium Omadine have equal or superior effect to organic mercury compound against P. oryzae, H. oryzae, and F. moniliforme. Benlate T and Homai are effective against blast and Bakanae disease, but are inferior to organic mercury compound against brown spot disease. Busan 30 and Panoctine are effective against blast and brown spot disease, but have moderately inferior effects against F. monilifome. It is considered that the recommendable testing methods of seed treatment were blotter method for P. oryzae and water agar plate method for H, oryzae and F. moniliforme according to the experimental results obtained. No phytotoxicity against seed germination and seedling growth were observed when treated with disinfectants before germination of seeds.

  • PDF

Antifungal Effects of Some Antibacterial Antibiotics against Phytophthora nicotianae var. parasitica in Vitro (세균용(細菌用) 항생제(抗生劑)의 참깨역병균(疫病菌) (Phytophthora nicotianae var. parasitica)에 대(對)한 항균효과(抗菌效果))

  • Kim, Hong Gi
    • Korean Journal of Agricultural Science
    • /
    • v.15 no.1
    • /
    • pp.76-81
    • /
    • 1988
  • This study was done to find out the antifungal activity of two antibacterial antibiotics, Chlorampenicol and Streptomycin sulfate, against Phytophthora n. var. Parasitica, the causal agent of Phytophthora blight of sesame, growing on artificial media. On PDA medium, Chlorampenicol at 10 ppm, Streptomycin sulfate at 25ppm highly inhibited mycerial growth and completely inhibited zoosporangial formation of Phytophthora n. var. parasitica, and Chlorampenicol at 5 ppm, Streptomycin sulfate at 10 ppm slightly inhibited the mycerial growth and zoosporangial formation of the fungus. These antibiotics showed considerably increased inhibitory effect on the fungal growth when they were mixed with other chemical. Protein content in myceria of the fungus was decreased and abnormal growth of mycerial apex was observed by treatment of these antibiotics. Phytotoxicity on sesame seedlings was not observed by application of them.

  • PDF

Fluoride in soil and plant

  • Hong, Byeong-Deok;Joo, Ri-Na;Lee, Kyo-Suk;Lee, Dong-Sung;Rhie, Ja-Hyun;Min, Se-won;Song, Seung-Geun;Chung, Doug-Young
    • Korean Journal of Agricultural Science
    • /
    • v.43 no.4
    • /
    • pp.522-536
    • /
    • 2016
  • Fluorine is unique chemical element which occurs naturally, but is not an essential nutrient for plants. Fluoride toxicity can arise due to excessive fluoride intake from a variety of natural or manmade sources. Fluoride is phytotoxic to most plants. Plants which are sensitive for fluorine exposure even low concentrations of fluorine can cause leave damage and a decline in growth. All vegetation contains some fluoride absorbed from soil and water. The highest levels of F in field-grown vegetables are found up to $40mg\;kg^{-1}$ fresh weight although fluoride is relatively immobile and is not easily leached in soil because most of the fluoride was not readily soluble or exchangeable. Also, high concentrations of fluoride primarily associated with the soil colloid or clay fraction can increase fluoride levels in soil solution, increasing uptake via the plant root. In soils more than 90 percent of the natural fluoride ranging from 20 to $1,000{\mu}g\;g^{-1}$ is insoluble, or tightly bound to soil particles. The excess accumulation of fluorides in vegetation leads to visible leaf injury, damage to fruits, changes in the yield. The amount of fluoride taken up by plants depending on the type of plant, the nature of the soil, and the amount and form of fluoride in the soil should be controlled. Conclusively, fluoride is possible and long-term pollution effects on plant growth through accumulation of the fluoride retained in the soil.

Reduced Bacterial Wilt in Tomato Plants by Bactericidal Peroxyacetic Acid Mixture Treatment

  • Hong, Jeum Kyu;Jang, Su Jeong;Lee, Young Hee;Jo, Yeon Sook;Yun, Jae Gill;Jo, Hyesu;Park, Chang-Jin;Kim, Hyo Joong
    • The Plant Pathology Journal
    • /
    • v.34 no.1
    • /
    • pp.78-84
    • /
    • 2018
  • Peroxyacetic acid mixture Perosan, composed of peroxyacetic acid, hydrogen peroxide and acetic acid, was evaluated for eco-friendly management of tomato bacterial wilt by Ralstonia pseudosolanacearum. Perosan drastically suppressed in vitro growth of R. pseudosolanacearum in liquid cultures in dose- and incubation time-dependent manners. Higher perosan doses (0.1 and 1%) caused lowered pH and phytotoxicity to detached leaves of two tomato cultivars Cupirang and Benekia 220 in aqueous solution. Treatment with 0.01% of Perosan delayed wilting symptom significantly in the detached leaves of two cultivars inoculated with R. pseudosolanacearum ($10^7cfu/ml$). Soil drenching of 5% Perosan solution in pots caused severe tissue collapse of tomato seedlings at the four-week-old stage of two tomato cultivars. Treatment with 1% Perosan by soil-drenching significantly reduced bacterial wilt in the tomato seedlings of two cultivars. These findings suggest that Perosan treatment can be applied to suppress bacterial wilt during tomato production.

Effect of Chemicals on Inducing Grain Sterility of Rice (수도의 불임 유기를 위한 몇가지 화학제의 효과)

  • Song, Moon-Tae;Kim, Jeung-Kyo;Choe, Zhin-Ryong
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.35 no.4
    • /
    • pp.309-314
    • /
    • 1990
  • A pot experiment was carried out to find the effects of chemicals and its application time on the sterility and other agronomic characters of rice. Two rice cultivars, Samgangbyeo, a Tongil type, and Chuchungbyeo, a japonica type rice were treated with maleic hydrazide (6000ppm), ethephon (6000ppm) and GA3 (10ppm) at five different growth stages. The application times of chemicals were comprised of two different stages of stem elongation and booting and panicle emerging stage. Grain sterility and panicle length were measured for panicles per pot. Culm length was measured for pot basis. MH induced complete grain sterility in rice, but caused severe plant damage (phytotoxicity) ; restricted spike emergence and drying out of plant leaves, sheath and panicles. Ethephon induced 50-60% grain sterility in rice with the least in plant damage. GA3 was not effective in inducing grain sterility in rice, but it increased culm length. The earlier application of chemicals, the higher sterility was induced. Both MH and ethephon reduced culm length and grain yield. Also observed was the varietal response in the occurrence of to chemicals Samgangbyeo showed the higher response to chemicals than Chuchungbyeo.

  • PDF