• Title/Summary/Keyword: Phytoplankton growth

Search Result 284, Processing Time 0.02 seconds

Determination of Optimum Water Intaking Depth Based on Phytoplankton Distribution in Unmun Reservoir (식물플랑크톤 분포도에 따른 운문호의 선택취수 수심 결정)

  • Baek, In-Ho;Kim, Chul-Ho;Lee, Jung-Ho
    • Korean Journal of Ecology and Environment
    • /
    • v.33 no.3 s.91
    • /
    • pp.311-318
    • /
    • 2000
  • The purpose of this study was to determine the optimum water intaking depth for water treatment plant based on the changes of phytoplankton distributions in Unmun reservoir. Sampling was carried around of intaking tower near the Dam site at monthly intervals from February to Ocotber in 1998. Total 79 phytoplankton taxa were observed and they were classified into 4 varieties, 75 species within 51 genera. Diatoms were mainly dominated from February to July. However Rhodomonas sp. was a dominant species in August, and Microcystis ichthyblabe in September and October. Cell density of 122,800 cells/mL in October was the highest, and 415 cells/mL in May was the lowest. The pattern of vertical distribution was similar until May; however, the cell density in the epilimnion was much higher than it in the hypolimnion during the periods with the high water temperature over $20^{\circ}C$ since June. The water depths showing over 5,000 cells/mL ranged from the surface to 9m in June, surface to 6m in September, and on the only surface in October. Based on water temperature and phytoplankton vertical distribution, the depth of 6m appeared to be the optimum intaking depth far water treatment plant: 75.4 to 98.0% of phytoplankton cell densities could be avoided and the temperature over $18.3^{\circ}C$ was preserved to prevent cold water damage for rice growth at the water depth during cyanobacterial blooming period in Unmun reservoir.

  • PDF

A study on the Oil Contents of Phytoplankton and Bay Scallop, Argopecten irradians (해만가리비와 먹이생물 Phytoplankton의 지질함량에 관한 연구)

  • Kim, Sook-Yang;Kang, Seok-Joong;Choi, Byeong-Dea;Jun, Sang-Ho
    • The Korean Journal of Malacology
    • /
    • v.26 no.3
    • /
    • pp.217-225
    • /
    • 2010
  • The total oil proportion of bay scallop by areas during the growing period was the highest (2.8%) at Tongyong in August, then it decreased to 1.88% in September and 0.62% in October, and it was the lowest (0.22%) in November. The total oil proportion of phytoplankton by areas was the highest at Tongyong, where it was decreased from 5.02% in August and 3.29% in September to 2.48% in October and 1.66% in November. For the composition of fatty acid of bay scallop by areas and seasons during the growing period, the major composition was 16:0 and 18:0 as saturated fatty acid, and 16:1n-7, 18:1n-7, 20:1n-9, ARA (20:4n-6), EPA (20:5n-3), DHA (22:6n-3) as monoenic acid. TMTD (4,8,12-trimethyltridecanoic acid) was detected in a little amount as special fatty acid. For the composition of fatty acid of prey by areas during the growing period of bay scallop from August to November 1998, n-3HUFA, Omega-3 highly unsaturated fatty acid, in August was 47.11% at Namhae in slowest growth, while it was distinctively low with 34.26% at Tongyong and 14.06% at Nammeon.

Seasonal Variations of Size-structured Phytoplankton in the Chunggye Bay (청계만 식물플랑크톤 크기구조의 계절적 변동)

  • Ji, Sung;Sin, Yong-Sik;Soh, Ho-Young
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.13 no.4
    • /
    • pp.333-341
    • /
    • 2008
  • Three embankments are located in the Chunggye Bay, each named as Changpo, Bokkil and Kuil and environmental changes are expected due to freshwater input. To investigate this phenomenon, three sample sites in front of each embankment gate were selected in Nov. 2006(autumn), Feb. 2007(winter), May. 2007(spring) and Aug. 2007(summer). At every point of embankment spot, large cells(micro-size, >$20\;{\mu}m$) of phytoplankton were turned out to be a major cause of algal bloom in Feb. 2007 and nano-size($2-20\;{\mu}m$) phytoplankton became dominant during rainy season. In rainy season, each point of embankment showed low salinity and transparency with higher ammonium and phosphorus concentrations than dry season. However, the number of phytoplankton has decreased and it is expected that freshwater influx has more influence on high turbidity and radical decrease of salinity than nutrient. According to the results of this study, therefore, nutrient could have more influence on growth of phytoplankton in dry season, but high turbidity and radical changes of salinity have more influence in rainy season.

Impact of UV Radiation and Elevated Temperature on Growth of Phytoplanktons, P. micans, and S. costatum

  • Lee, Bong-Hun;Park, Heung-Jai;Park, Won-Woo;Kim, Woo-Seong
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.3 no.3
    • /
    • pp.197-201
    • /
    • 1999
  • The growth of two phytoplanktons was studied in a natural environment and in the laboratory under artificial radiation conditions in the presence or absence of UV radiation. The effect of an elevated temperature on the two phytoplanktons was also examined. UV radiation resulted in a decrease in the growth of the two phytoplanktons ; P. micans was more affected by UV than S. costatum. Four hours of UV radiation decreased the motility of S. costatum and P. micans by 20% and 40%, respectively. Accordingly, an elevated temperature and UV radiation decreased the growth rate of the two phytoplanktons investigated.

  • PDF

Primary Productivity Measurement Using Carbon-14 and Nitrogenous Nutrient Dynamics in the Southeastern Sea of Korea (한국 동남해역의 해양기초생산력 (C$^{14}$ )과 질소계 영양염 동적 관계)

  • 심재형;박용철
    • 한국해양학회지
    • /
    • v.21 no.1
    • /
    • pp.13-24
    • /
    • 1986
  • The daily net primary production by phytoplankton in the southeastern sea of Korea in October 1985 ranged from 0.7 to 2.7 gCm$\^$-2/ d$\^$-1/ and averaged to be 1.3 gCm$\^$-2/ d$\^$-1/. Surface total chlorophyll ranged from 0.97 to 3.59mg chlm$\^$-3/. Primary production by nano-phytoplankton(〈20$\mu\textrm{m}$) ranged from 43 to 97% in the surface layer. Optimum light intensity(Iopt)was around 300 to 700${\mu}$Es$\^$-1/m$\^$-1/. Surface primary production from 9:00 to 15:00 h was evidently inhibited by strong light intensity beyond the Iopt. Phytoplankton near the base of euphotic zone(30-40m) showed extremely low Iopt suggesting adaptation to a low light environment. Since Iopt represents the history of light experience of phytoplankton at a given depth, the extent of variation in I of phytoplankton at different depth seems to be related to the in tensity of turbulence mixing in the surface mixed layer. From the present study, ammonium excretion by macrozooplankton (〉350$\mu\textrm{m}$) contributes from 3 to 19% of daily total nitrogen requirement by phytoplandton in this area. Calculation of upward flux of nitrate to the surface mixed layer from the lower layer, based on the simple diffusion model, approximates 3% of nitrogen requirement by phytoplankton. However, large portion of nitrogen requirement by phytoplankton remains unexplained in this area. In upwelling area near the coast, adjective flux might be the major source for the nitrogen requirement by phytoplankton. This study suggests that the major nitrogen source for the phytoplankton growth might come from the pelagic regeneration by nano-and micro-sized heterotrophic plandkon. Enhancement of primary production during the passage of the warm Tsushima Current is discussed in relation with nutrient dynamics and hydrlgraphic processes in this area.

  • PDF

Variation Analysis of Phytoplankton Communities in Northern Gamak Bay, Korea (북부 가막만의 식물플랑크톤 군집 변동 해석)

  • Oh, Seok-Jin;Park, Jong-Sik;Yoon, Yang-Ho;Yang, Han-Soeb
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.15 no.4
    • /
    • pp.329-338
    • /
    • 2009
  • Using physiological data which had been already published, we investigated variation of phytoplankton communities due to changes of marine environmental factor at 2 stations of northern Gamak Bay from November 2007 to September 2008. Dominant species (occupied species above 10%) were dinoflagellates 1 species and diatom 11 species. Diatom Skeletonema costatum was observed as dominant species during the periods except in summer (i.e. July and August), especially, which occupied above 90% in December. On the other hand, dominant species during summer were diatom Eucampia zodiacus and Chaetoceros spp., Considering the results of other physiological studies, S. costatum might be non-dominant species during summer by following reasons 1) growth rate of E. zodiacus might be taster than that of S. costatum under the temperature during summer although both S. costatum and E. zodiacus are eurythermal and euryhaline species. 2) Species as E. zodiacus characterized by low affinity with light might have a chance to be dominant with increasing optical transparency due to low suspended solids in July. 3) In aspect of nutrition, species of growth strategist as S. costatum could be dominant in relatively low concentration of phosphate and species of storage strategist as E. zodiacus could be dominant in relatively high concentration of phosphate during summer in this study area. In order to understand the phytoplankton dynamics in detail, the physiological informations about strains isolated from this study area are necessary because physiological conditions are different depending on isolated area.

  • PDF

Effects of Dissolved Organic Nitrogen on the Growth of Dominant Phytoplankton in the Southwestern Part of East Sea in Late Summer (늦여름 동해 남서해역에서 용존 유기 질소가 우점 식물플랑크톤의 생장에 미치는 영향)

  • Kwon, Hyeong-Kyu;Jeon, Seul-Gi;Oh, Seok-Jin
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.22 no.1
    • /
    • pp.42-51
    • /
    • 2016
  • We investigated the distribution of dissolved nutrients, phytoplankton community structure and utilization of nitrogen compounds by dominant species in the southwestern part of East Sea in September, 2014. Dissolved inorganic nitrogen (DIN) and dissolved inorganic phosphorus (DIP) were lower in the surface layer, and concentrations were increased with depth. Dissolved organic nitrogen (DON) and dissolved organic phosphorus were the opposite of dissolved inorganic nutrients. Although DIN DIP ratio in all of the water masses was higher than Redfield ratio (16), DIN : DIP ratio in mixed layer was about 2, indicating that inorganic nitrogen is the limiting factor for the growth of phytoplankton. In particular, DON proportion in dissolved total nitrogen was about 88 % in the mixed layer where inorganic nitrogen is limiting factor. The dominant species Chaeotceros debilis and Prorocentrum minimum were able to grow using DIN as well as DON such as urea and amino acids. Therefore, DON utilization of phytoplankton may play a role as a survival strategy in the DIN-limited conditions of East Sea.

Alkaline Phosphatase Activity and Utilization of Dissolved Organic Phosphorus by Phytoplankton Isolated from Korean Coastal Waters (한국 연안역에서 분리한 식물플랑크톤의 alkaline phosphatase 활성과 용존태 유기인의 이용)

  • Oh, Seok-Jin;Kwon, Hyeong-Kyu;Yang, Han-Soeb
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.15 no.1
    • /
    • pp.16-24
    • /
    • 2010
  • Utilization of dissolved organic phosphorus (DOP) and alkaline phosphatase (APase) activity by Skeletonema costatum, Chaetoceros didymus, Alexandrium tamarense and Heterosigma akashiwo under the phosphorus deficient condition were examined in the laboratory. S. costatum, C. didymus, A. tamarense and H. akashiwo could make use of phosphomonoester and nucleotide compounds for the growth of them as a phosphorus source. APase activity of S. costatum, C. didymus, A. tamarense and H. akashiwo began to be activated at dissolved inorganic phosphorus (DIP) concentrations less than $0.30\;{\mu}M$, $0.33\;{\mu}M$, $2.04\;{\mu}M$ and $0.63\;{\mu}M$ respectively, and their maximum APase activity were $0.01\;pmol\;cell^{-1}\;hr^{-1}$, $0.11\;pmol\;cell^{-1}\;hr^{-1}$, $1.63\;pmol\;cell^{-1}\;hr^{-1}$ and $0.19\;pmol\;cell^{-1}\;hr^{-1}$, respectively. Although each phytoplankton species displayed different APase activity for DOP utilization, their maximum APase activities were higher than maximum phosphorus uptake rates, inferring that these species might be able to keep growing under DIP-limited conditions thought utilizing effectively the hydrolized product of DOP. This result also implies that utilization of DOP might contribute to not only the growth of red tide forming phytoplankton but also the interspecific competition among phytoplankton species in coastal environments.

Long-term Water Quality Fluctuations in Daechung Reservoir and the Limiting Nutrient Evaluations Using In Situ Enclosure Nutrient Enrichment Bioassays (NEBs) (대청호에서 장기간 수질변동 및 인위적 Enclosure 영양염 투여실험에 따른 제한 영양염류 평가)

  • Park, Hyang-Mi;An, Kwang-Guk
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.4
    • /
    • pp.551-560
    • /
    • 2012
  • The objectives of this study were to elucidate spatio-temporal heterogeneity of water chemistry and develop empirical models using trophic variables in Daechung Reservoir during 2005-2010 along with in situ tests of nutrient enrichment bioassays (NEB). The relations of water quality parameters in regard to precipitation showed that seasonal and interannual fluctuations of biological oxygen demand (BOD), total nitrogen (TN) and pH were minor, whereas conductivity, suspended solids (SS), and total phosphorus (TP) were largely varied in response to the magnitude of rainfall. The CHL maxima occurred immediately after the spate of TP during the high flow, indicating that phytoplankton growth was directly controlled by phosphorus. Empirical linear models of CHL-TP indicated that the variation of CHL in premonsoon was accounted 60% ($R^2$ = 0.60, p < 0.05, n = 54) by TP. In the mean time, empirical models of annual CHL-TN showed that the variation of CHL was weakly accounted ($R^2$ = 0.16, p < 0.001) by TN and more strongly ($R^2$ = 0.44, p < 0.001) by TP. Thus, the variation of CHL was more explained by the variation of TP than TN. In situ tests of Nutrient Enrichment Bioassays (NEBs) showed that the growth of CHL was greater in the P-treatments (as $PO_4-P$) than the control and N-treatment (as $NO_3-P$). Overall, our results suggest that phosphorus was aprimary limiting nutrient controlling the seasonal phytoplankton growth, based on the in situ experiments of NEBs.

Temporal and Spatial Characteristics of Water Quality in a River-Reservoir (Paldang) (하천형 호수인 팔당호 수질의 시공간적 특성)

  • Kong, Dongsoo;Min, Jeong-Ki;Byeon, Myeongseop;Park, Hae Kyung;Cheon, Se-Uk
    • Journal of Korean Society on Water Environment
    • /
    • v.34 no.5
    • /
    • pp.470-486
    • /
    • 2018
  • This study is to investigate the allochthonous load and water quality of a typical river-reservoir, Paldang during spring (March ~ May) of 17 years (2001 ~ 2017). Phosphorus loading from point sources seems to have been reduced by 74 % in the 2010s. As a result, trophic state of the Paldang reservoir, eutrophic during the 2000s, has returned to the lmesotrophic state. Along with decrease in phosphorus concentration, standing crops of algae (Chl.a) decreased, and concentration of biodegradable organic material decreased to the past level. Concentration of total suspended solids has decreased, and it is due to the decrease of phytoplankton standing crops since the mid-2000s. As transparency increased, it is estimated that euphotic area increased by 22 % and euphotic capacity expanded by 27 %. In the river/transition zone of Paldang, concentration of organic matter increases slightly due to algal growth, but concentration of all water quality items decreases in the lacustrine zone. Although algal growth rate revealed positive correlation with concentration of phosphorus, it was insignificant. Algal growth appeared to be dependent on renewal of phosphorus by flow, than either flow rate or phosphorus concentration. The empirical model including inflow phytoplankton concentration fit well with observed values, and indicates the Paldang reservoir is greatly influenced by allochthonous loads.