Browse > Article

Alkaline Phosphatase Activity and Utilization of Dissolved Organic Phosphorus by Phytoplankton Isolated from Korean Coastal Waters  

Oh, Seok-Jin (Korea Inter-University Institute of Ocean Science, Pukyong National University)
Kwon, Hyeong-Kyu (Department of Oceanography, Pukyong National University)
Yang, Han-Soeb (Korea Inter-University Institute of Ocean Science, Pukyong National University)
Publication Information
The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY / v.15, no.1, 2010 , pp. 16-24 More about this Journal
Abstract
Utilization of dissolved organic phosphorus (DOP) and alkaline phosphatase (APase) activity by Skeletonema costatum, Chaetoceros didymus, Alexandrium tamarense and Heterosigma akashiwo under the phosphorus deficient condition were examined in the laboratory. S. costatum, C. didymus, A. tamarense and H. akashiwo could make use of phosphomonoester and nucleotide compounds for the growth of them as a phosphorus source. APase activity of S. costatum, C. didymus, A. tamarense and H. akashiwo began to be activated at dissolved inorganic phosphorus (DIP) concentrations less than $0.30\;{\mu}M$, $0.33\;{\mu}M$, $2.04\;{\mu}M$ and $0.63\;{\mu}M$ respectively, and their maximum APase activity were $0.01\;pmol\;cell^{-1}\;hr^{-1}$, $0.11\;pmol\;cell^{-1}\;hr^{-1}$, $1.63\;pmol\;cell^{-1}\;hr^{-1}$ and $0.19\;pmol\;cell^{-1}\;hr^{-1}$, respectively. Although each phytoplankton species displayed different APase activity for DOP utilization, their maximum APase activities were higher than maximum phosphorus uptake rates, inferring that these species might be able to keep growing under DIP-limited conditions thought utilizing effectively the hydrolized product of DOP. This result also implies that utilization of DOP might contribute to not only the growth of red tide forming phytoplankton but also the interspecific competition among phytoplankton species in coastal environments.
Keywords
dissolved organic phosphorus; alkaline phosphatase; dissolved inorganic phosphorus; Skeletonema costatum; Chaetoceros didymus; Alexandrium tamarense; Heterosigma akashiwo; DOP; Apase; DIP;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Guillard, R.R.L. and P.E. Hargraves, 1993. Strichochrysis immobilise is a diatom, not a chrysophyte. phycologia, 32: 234-236.   DOI
2 Kobori, H. and N. Taga, 1979. Phosphatase activity and its role in the mineralization of organic phosphorus in coastal sea water. J. Exp. Mar. Bio. Ecol., 36: 23-39.   DOI   ScienceOn
3 Nishikawa, T. and Y. Hori, 2004a. Effects of nitrogen, phosphorus and silicon on a growth of a diatom Eucampia zodiacus caused bleaching of seaweed Porphyra isolated from Harima-Nada, Seto Inland Sea, Japan. Nippon Suisan Gakkaishi., 70: 31-38.   DOI   ScienceOn
4 Shan, Y., I.D. Mckelvie and B.T. Hart, 1994. Determination of alkaline phosphatase-hydrolyzable phosphorus in nature water systems by enzymatic flow injection. Limnol. Oceanogr., 39: 1993-2000.   DOI   ScienceOn
5 Yamaguchi, H., T. Nishijima, A. Oda, K. Fukami, M. Adachi, 2004b. Distribution and variation of alkaline phosphatase activity and phsphatase hydrolyzable phosphorus in coatal seawater. Nippon Suisan Gakkaishi., 70: 333-342.   DOI   ScienceOn
6 Yamaguchi, H., H. Sakou, K. Fukami, M. Adachi, M. Yamaguchi and N. Nishijima, 2005. Utilization of organic phosphorus and production of alkaline phosphatase by the phytoplankton, Hepterocapsa circularisquama, Fibrocapsa japonica and Chaetoceros ceratosporum. Plankton Biol. Ecol., 52: 65-75.
7 Yamaguchi, H., S. Sakamoto and M. Yamaguchi, 2008. Nutrition and growth kinetics in nitrogen- and phosphorus-limited cultures of the novel red tide flagellate Chattonella ovata (Raphidophyceae). Harmful Algae., 7: 26-32.   DOI   ScienceOn
8 Yamamoto, T., K. Tarutani, 1999. Growth and phosphate uptake kinetics of the toxic dinoflagellate Alexandrium tamarense from Hiroshima Bay in the Seta Inland Sea, Japan. Phycol. Res., 47: 27-32.   DOI   ScienceOn
9 Oh, S.J., Y. Matsuyama, T. Yamamoto, M. Nakajima, H. Takatsuzi, and K. Hujisawa, 2005. Recent developments and causes of harmful dinoflagellate blooms in the Seto Inland Sea-Ecological importance of dissolved organic phosphorus (DOP). Bull. Coast. Oceanogr., 43: 85-95.
10 Wetzel, R.G., 1991. Extracelluar enzymeatic interaction: storage, redistribution and interspecific communication. In; Microbial Enzymes in Aquatic Environments, edited by Chrost, R.J., Springer-Verlag, New York, pp. 6-28.
11 Pomeroy, L.R., H.M. Mathews and H.S. Min, 1963. Excretion of phosphate and soluble organic phosphorus compounds by zooplankton. Limnol. Oceanogr., 8: 50-55.   DOI   ScienceOn
12 Price, N. and F. Morel, 1990. Role of extracellular enzymatic reactions in natural waters. In: Aqatic Chemical Kinetics: Reaction Rates of processes in Natural Waters, edited by Stumm, W. Wiley-Interscience, New York, pp. 235-258.
13 Tarutani, K. and T. Yamamoto, 1994. Phosphate uptake and growth kinetics of Skeletonema costatum isolated from Hiroshima Bay. J. Fac. Appl. Biol. Sci., 33: 59-64.
14 Provasoil, L., K. Shiraishi and J.R. Lance, 1959. Nutritional idio-syncrasies of Artemia and Tigriopus in monoxenic culture. Ann. N. Y. Sci., 77: 250-261.
15 Sharp, J.H., 1977. Excretion of organic matter by marine phytoplankton: Do healthy cells do it. Limnol Oceanorgr., 22: 381-399.   DOI   ScienceOn
16 Suzumura, M., K. Ishikawa, H. Ogawa, 1998. Characterization of dissolved organic phosphorus in coastal seawater using ultrafiltration and phosphohydrolytic enzymes. Linmol. oeanogr., 43: 1553-1564.
17 Yamaguchi, M. and S. ltakura, 1999. Nutrition and growth Kinetics in nitrogen- or phosphorus -limited cultures of the noxious red tide dinoflagellate Gymnodinium mikimotoi. Fish. Sci., 65: 367-373.   DOI
18 Yamaguchi, M., S. Itakura and T. Uchida, 2001. Nutrition and growth kinetics in nitrogen- or phosphorus-limited cultures ofnovel red tidedinoflagellate Hepterocapsa circularisquama (Dinophyceae). Phycologia., 40: 313-318.   DOI   ScienceOn
19 Yamaguchi, H., T. Nishijima, H. Nishitani, K. Fukami and M. Adachi, 2004a. Organic phosphorus utilization and alkaline phosphatase production of 3 red tide phytoplankton. Nippon Suisan Gakkaishi., 70: 123-130.   DOI   ScienceOn
20 Kuenzler, E.J. and J.P. Perras, 1965. Phosphatase of marine algae. Biol. Bull. Mar. Biol. Lab. Woods Hole., 128: 271-284.   DOI   ScienceOn
21 Kuenzler, E.J., 1970. Dissolved organic phosphorus excretion by marine phytoplankton. J. Phycol., 6: 7-13.
22 Lee, Y.W. and G.B. Kim, 2007. Linking groundwater-borne nutrients and dinoflagellate red-tide outbreaks in the southern sea Korea using a Ra tracer. Estuar. Coast. Shelf Sci., 71: 309-317   DOI   ScienceOn
23 Nishijima, T., Y. Hata and S. Yamauchi, 1989. Physiological ecology of Prorocentrum triestinum. Bull. Jpn. Soc. Sci. Fish., 55: 2009-2014.   DOI
24 Matsuda, A., T. Nishijima and K. Fukami, 1999. Effects of nitrogenous and phosphorus nutrients on the growth of toxic dinoflagellate Alexandrium catenella. Nippon Suisan Gakkaishi., 65: 847-855.   DOI   ScienceOn
25 Monaghan, E.J. and K.C. Ruttenberg, 1999. Dissolved organic phosphorus in the coastal ocean: Reassessment of available methods and seasonal phosphorus profiles from the Eel River Shelf. Limnol. Oceanogr., 44: 1702-1714.   DOI   ScienceOn
26 Nausch, M., 1998. Alkaline phosphatase activities and the relationship to inorganic phosphate in the Pomeranian Bight (southern Baltic Sea). Aquat. Microb. Ecol., 16: 87-94.   DOI   ScienceOn
27 Nishikawa, T. and Y. Hori, 2004b. Effects of nitrogen, phosphorus and silicon on a growth of a diatom Coscinodiscus wailesii causing Porphyra bleaching isolated from Harima-Nada, Seto Inland Sea, Japan. Nippon Suisan Gakkaishi., 70: 872-878.   DOI   ScienceOn
28 Oh, S.J., T. Yamamoto, Y. Kataoka, O. Matsuda, Y. Matsuyama and Y. Kotani, 2002. Utilization of dissolved organic phosphorus by the two toxic dinoflagellates, Alexandrium tamarense and Gymnodinium catenatum (Dinophyceae). Fish. Sci., 68: 416-424.   DOI   ScienceOn
29 Dyhrman, S.T. and B. Palenik, 1999. Phosphate stress in cultures and field populations of the dinoflagellate Prorocentrum minimum detected by a single-cell alkaline phosphatase assay. Appl. Environ. Microviol., 65: 3205-3212.
30 Gallagher, J.C., 1982. Physiological variation and electrophoretic banding patterns of genetically different seasonal populations of Skeletonema costatum (Bacillariophyceae). J. phycol., 18: 148-162.   DOI
31 Hirayama, K., T. Doma, N. Hamamura and T. Muramatsu, 1989. Role of alkaline phosphatase activity in the growth red tide organisms. In: Red Tides: Biology, Environmental Science and Toxicology, edited by Okaichi, T., D.M. Anderson and T. Nemoto, Elsevier, New York, pp. 317-320.
32 Guillard, R.R.L. and D. Ryther, 1962. Studies of marine planktonic diatom I: Cyclotella nana Hustedt and Detonula confervacea (Cleve) Gran. Can. J. Microbiol., 8: 229-239.   DOI   ScienceOn
33 Hodson, R.E., A.E. Maccubbin and L.R. Pomeroy, 1981. Dissolved adenosine triphosphate utilization by free living and attached bacterioplankton. Mar. Biol., 64: 43-51.   DOI
34 Hernndez, I., F.X. Niell and J.A. Fernandez, 1994. Alkaline phosphatase activity in marine macrophytes: Histochemical localization in some widespread species in southern Spain. Mar. Biol., 120: 501-509.   DOI   ScienceOn
35 Karl, D.M., 2000. Phosphorus the staff of life. Nature, 406: 31-33.
36 Keller, M.D., R.C. Selvin, W. Claus and R.R.L. Guillard, 1987. Media for the culture of oceanic ultraphytoplankton. J. Phycol., 23: 633-638.
37 Ketchum, B.H, N. Corwin and D.J. Keen, 1955. The significance of organic phosphorus determinations in ocean water. Deep-Sea Res., 2: 172-181.   DOI   ScienceOn
38 KIM, D.I., T. Matsubara, S.J. Oh, Y. Shimasaki, Y. Oshima and T. Honjo, 2007. Effects of nitrogen and phosphorus sources on the utilization and growth kinetics of the harmful dinoflagellate Cochlodinium polykrikoides isolated from Yatsushiro Sea, Japan. Nippon Suisan Gakkaishi., 73: 711-717.   DOI   ScienceOn
39 이영식, 2004. 광양만에서 식물플랑크톤증식 제한영양염의 시.공간적 변동특성. 대한환경공학회지, 26: 890-895.
40 김광수, 2001. 목포항 수질오염과 부영양도의 계절변화. 한국해양환경공학회지, 4: 3-15.
41 이원호, 심재형, 1995. 한국연안 산 규조 Skeletonema costatum의 조도에 대한 생태적 지위 성분의 종내 변위, 한국해양학회지, 35: 534-541.
42 이찬원, 권영택, 부민호, 권혁보, 양기섭, 2000. 남해연안 패류양식장의 부영앙화 특성. 한국해양환경공학회지, 3: 24-33.
43 조현서, 조천래, 강조해, 이규형, 2006. 2004-2005년 광양만의 해양수질 및 저질의 계절적 변동에 관한 연구. 해양환경안전학회 춘계학술발표대회 논문집, pp. 129-135.
44 해양수산부, 2005. 해양환경공정시험방법.
45 Ammerman, J.W., 1991. Role of ecto-phosphohydrolases in phosphorus regeneration estuarine and coastal ecosystems. In: Microbial Enzymes in Aquatic Environments, edited by Chrost, R.J., Springer-Verlag, New York, pp. 165-186.
46 Brand, L.E., R.R.L. Guillard and L.S. Murphy, 1981. A method for the rapid and precise determination of acclimated phytoplankton reproduction rates. J. Plankton Res., 3: 193-201.   DOI
47 Beusekom, J.E.E. and D.H. Brockmann, 1998. Transformation of phosphorus in the Elbe estuary. Estuaries., 21: 518-526.   DOI   ScienceOn
48 Cembella, A.D., N.J. Antia and P.J. Harrison, 1984. The utilization of inorganic and organic phosphorus compounds as nutrients by eukaryotic microalgae: a multidisciplinary perspective: Part 1. CRC Critic. Rev. Microbiol., 10: 317-391.
49 Doblin, M.A., S.l. Blackburn and G.M. Hallegraeff, 1999. Growth and biomass stimulation of the toxic dinoflagellate Gymnodinium catenatum (Graham) by dissolved organic substances. J. Exp. Mar. Biol. Ecol., 236: 33-47.   DOI   ScienceOn
50 Droop, M.R., 1973. Some thoughts of nutrient limitation in algae. J. Phycol., 9: 264-272.