• Title/Summary/Keyword: Phytoplankton community distribution

Search Result 102, Processing Time 0.023 seconds

On the Spatio-temporal Distribution of Phytoplankton Community in the Southwestern Parts of Deukryang Bay, South Korea (득량만 남서해역 식물플랑크톤 군집의 시ㆍ공간적 분포특성)

  • 윤양호;김동근
    • Korean Journal of Environmental Biology
    • /
    • v.21 no.1
    • /
    • pp.8-17
    • /
    • 2003
  • The spatio-temporal distribution and seasonal fluctuations of phytoplankton community were carried out in the Southwestern parts of Deukryang Bay of the Korean South Sea from July 1997 to January 1998. A total of 60 species of phytoplankton belonging to 41 genera was identified. In the southwestern parts of Deukryang Bay seasonal succession in dominant species; Eucampia zodiacus, and Chaetoceros spp. in summer, Nitzschia longissima, Chaetoceros curvisetus and Bacillaria paxillifera in autumn, Skeletonema costatum and B. paxillifera in winter, were very predominant. The community structure of phytoplankton in the southwestern parts of Deukryang Bay appeared to be diverse in species composition, and diatoms were most dominant through the year. Phytoplankton standing crops fluctuated with an annual mean of $1.2{\times}10^5$ cells $L^{-1}$ between the lowest value of $8.0{\times}10^3$ cells $L^{-1}$ in January and the highest value of $6.9{\times}10^5$cells $L^{-1}$ by Nitzschia longissima in January. Densities of the phytoplankton cell number by the samples of the southwestern parts of Deukryang Bay ranged from $1.1{\times}10^4$ cells $L^{-1}$ to $1.3{\times}10^5$ cells $L^{-1}$ with the mean value of $4.1{\times}10^4$ cells $L^{-1}$ in summer, from $1.0{\times}10^4$ cells $L^{-1}$ to $6.9{\times}10^5$ cells $L^{-1}$ with mean of $1.8{\times}10^5$ cells $L^{-1}$ in autumn, from $8.0{\times}10^3$ cells $L^{-1}$ to $4.6{\times}10^5$ cells $L^{-1}$ with mean $1.6{\times}10^5$ cells $L^{-1}$ in winter. That is to say, phytoplankton standing crops was high in low temperature seasons, while low in high temperature seasons. Chlorophyll a concentration fluctuated between 1.08 mg $m^{-3}$ and 21.6 mg $m^{-3}$ in January. In the southwestern parts of Deukryang Bay temporal change in chl-a concentration was not apparent. But chl-a concentration was high during a year. Therefore, phytoplankton production in the southwestern parts of Deukryang Bay could be very high year-round.

Characteristics of Horizontal Community Distribution and Nutrient Limitation on Growth Rate of Phytoplankton during a Winter in Gwangyang Bay, Korea (동계 광양만에서 식물플랑크톤 군집구조의 수평적 분포특성과 성장에 미치는 영양염 제한 특성)

  • Baek, Seung-Ho;Kim, Dong-Sun;Hyun, Bong-Gil;Choi, Hyun-Woo;Kim, Young-Ok
    • Ocean and Polar Research
    • /
    • v.33 no.2
    • /
    • pp.99-111
    • /
    • 2011
  • To estimate the effects of limitation nutrients for phytoplankton growth and its influences on short-term variations of a winter phytoplankton community structure, we investigated the abiotic and biotic factors of surface and bottom waters at 20 stations of inner and offshore areas from 6 to 7 February in Gwangyang Bay, Korea. Also, several algal bio-assay studies were conducted to identify any additional nutrient effects on phytoplankton assemblage using surface water for the assay. The dominant species in the bay was diatom Skeletonema costatum, which occupied more than 70% of total species in most stations (St.1-16) of the inner bay. According to a cluster and multidimensional scaling (MDS) analysis based on phytoplankton community data from each station, the bay was divided into three groups. The first group included stations from the south-western parts of Myodo lsland, which can be characterized as a semien-closed eutrophic area with high phytoplankton abundance. The second group included most stations from the north-eastern part of Myodo lsland, influenced indirectly by surface water currents from offshore of the bay. The standing phytoplankton crops were lower than those of the first group. The other cluster was restricted to samples collected from offshore of the bay. In the bay, silicon (Si) and phosphorus (P) were not a major limiting factor for phytoplankton production. However, since the DIN: DIP and DSi: DIN ratios clearly demonstrated that there were potential stoichiometric N limitations, nitrogen (N) was considered as a limiting factor. Based on the algal bio-assay, in vivo fluorescence values in N (+) added experiments were higher compared to control and P added experiments. Our results suggested that nitrogen may act as one of the most important factors in controlling primary production during winter in Gwangyang Bay.

Distribution Characteristics and Community Structure of Phytoplankton in the Different Water Masses During Early Summer of Southern Sea of Korea (초여름 남해광역권의 수괴별 식물플랑크톤 군집구조 특성)

  • Baek, Seung-Ho;Shin, Kyoung-Soon;Hyun, Bong-Gil;Jang, Pung-Guk;Kim, Hyun-Su;Hwang, Ok-Myung
    • Ocean and Polar Research
    • /
    • v.32 no.1
    • /
    • pp.1-13
    • /
    • 2010
  • To assess short-term variation of summer phytoplankton community structure in different water masses, phytoplankton and environmental factors were monitored from 31 stations on and off the southern coasts of Korea, from June 18 to June 20 2009. According to multidimensional scaling (MDS) and cluster analysis based on phytoplankton community data from each station, the southern sea was divided into two groups. The first group included stations in the south-eastern region of Jeju Island, which is strongly influenced by the Kuroshio warm current. The second group located along the coastal region of the southern sea, which was mainly comprised of Bacillariophyceae and Crytophyceae. Of these stations, St. 13 and 28 formed a temperature front caused by different hydrological conditions. In particular, nutrients and Chl.a concentrations in these two stations were significantly higher compared to those in the other stations. This indicates that phytoplankton population and subsequent microalgal growth under high nutrient concentrations vary in different water masses. Our results support the theory that phytoplankton community structure in the southern sea of Korea can be influenced on a short-term scale by different water masses and currents.

A Study of Variation Characteristics of the Phytoplankton Community by UPLC Located in the Jinju Bay, Korea (UPLC를 이용한 남해 진주만 식물플랑크톤 군집 변동특성 연구)

  • Lee, Eugene;Son, Moonho;Kim, Jeong Bea;Lee, Won Chan;Jeon, Ga Eun;Lee, Sang Heon
    • Korean Journal of Environmental Biology
    • /
    • v.36 no.1
    • /
    • pp.62-72
    • /
    • 2018
  • In order to provide important information for the efficient management of the identified farm ecosystem in Jinju Bay, we investigated the spatial and temporal distribution of the phytoplankton community using a UPLC pigment analysis and a CHEMTAX program from the timeframe of February 2013 to January 2014. In addition, we measured the available physical and chemical parameters controlling the distribution of the phytoplankton communities. As a result of this comprehensive pigment analysis, it was noted that the Diatoms were the predominant species with an average of 77.1% as noted located in Jinju Bay. It was discovered that during the summer season, the phytoplankton community composition was changed by a reduction of diatoms and noted increases of the Cryptophytes, Prasinophytes, and Dinoflagellates. Especially, it was noted that the Cryptophytes and Prasinophytes were shown with an average of 18.8% and 17.8% in June, respectively. However, it was revealed that the Cryptophytes and Prasinophytes were not shown by a microscopic observation. The phytoplankton community composition was correlated with the temperature and salinity variations as noticed in the Jinju Bay. Therefore, the water temperature and freshwater inputs in the Jinju Bay were important environmental factors for controlling the phytoplankton community composition and the varying Cryptophytes and the noted amounts of Prasinophytes as well.

Spatial distributions of phytoplankton community in the coastal waters of South Sea, Korea during the early summer of 2018 (2018년 이른 여름 남해 연안해역 식물플랑크톤 군집의 공간분포 특성)

  • Yoon, Yang Ho;Park, Jong Sick;Kim, Byoung Sub
    • Korean Journal of Environmental Biology
    • /
    • v.37 no.2
    • /
    • pp.164-176
    • /
    • 2019
  • For this study, we carried out a field survey on the analysis for the spatial distributions of phytoplankton community in the eleven areas of the Korean South Sea during the early summer of 2018. The results from the study showed that the phytoplankton community consisted of 56 genera and 105 species showing by diatoms with 52.4%, dinoflagellates with 40.0% and other phytoflagellates with 7.6%. The cell density of the phytoplankton ranged from 5.5 to 593.2 cells mL-1. The species number and cell density of the phytoplankton were high in the eastern waters of the South Sea and low in the western one. The phytoplankton community showed the characteristics of being dominated by the diatoms except in the Geumpo of Namhae, Ocheon-dong of Yeosu and Oenarodo of Goheung. The dominant species of the phytoplankton community were the centric diatoms, Skeletonema costatum-like species (ls), except for the Ocheon-dong and Chungdo of Wando. However, the Ocheon-dong was dominated by toxic dinoflagellate, Gymnodinium catenatum by 41.1% dominance. On the other hand, Keumpo and Oenarodo was by dinoflagellate, Tripos fusus more than 12% dominance in the surface layer. The spatial distribution of the phytoplankton community in the coastal waters of the Korean South Sea in the early summer were determined by the supply of nutrients through precipitation.

Effects of Physicochemical and Environmental Factors on Spatial and Temporal Variations in Phytoplankton Pigment and its Community Composition in Jinhae Bay (진해만에서 물리화학적 환경요인이 식물플랑크톤 색소 및 군집조성의 시공간적 변화에 미치는 영향)

  • Na, Sujin;Lee, Jiyoung;Kim, Jeong Bae;Koo, Jun-Ho;Lee, Garam;Hwang, Hyunjin
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.2
    • /
    • pp.340-354
    • /
    • 2021
  • The aim of this study was to investigate the spatial and temporal distribution of phytoplankton biomass and community composition in Jinhae Bay on the southern coast of Korea. Phytoplankton pigment analysis was conducted using ultra performance liquid chromatography (UPLC) were conducted from April to December 2019 at seven stations. Temperature, salinity, and dissolved oxygen (DO) and inorganic nutrients (dissolved nitrogen, dissolved phosphorus, and orthosilicic acid) were measured to investigate the environmental factors associated with the structure of phytoplankton community. Phytoplankton biomass (Chl-a) was the highest in July (mean 15.4±4.3 ㎍/L) and the lowest in December (mean 3.5±0.6 ㎍/L). Fucoxanthin was the most abundant carotenoid and showed a similar variation pattern to Chl-a, peridinin, and Chl-b. Phytoplankton community composition analysis showed that diatoms were a predominant group with an average abundance of 70 % whereas chlorophytes, cryptophytes, and dinoflagellates often appeared with lower averages. Further, the dominance of diatoms was closely correlated with water temperature and N:P ratio, which might be influenced by high temperatures in the summer and nutrient loading from the land. Additionally, freshwater and nutrient input by rainfall was estimated to be the most important environmental factor. Hence, the spatial and temporal variations in the composition of phytoplankton pigments and phytoplankton community were correlated with physicochemical and environmental parameters.

Phytoplankton in the Waters of the Ieodo Ocean Research Station Determined by Microscopy, Flow Cytometry, HPLC Pigment Data and Remote Sensing (현미경, Flow Cytometer, HPLC 색소자료 및 원격탐사를 이용한 이어도 관측기지 주변수의 식물플랑크톤 연구)

  • Noh, Jae-Hoon;Yoo, Sin-Jae;Lee, Jung-Ah;Kim, Hyun-Chul;Lee, Jae-Hak
    • Ocean and Polar Research
    • /
    • v.27 no.4
    • /
    • pp.397-417
    • /
    • 2005
  • Phytoplankton community structure and distribution pattern in the surface water around the Ieodo Ocean Research Station were investigated during seven cruises carried out from July, 2003 to October, 2004. Samples were analyzed using various tools including a microscope, flow cytometer, and HPLC. Satellite images were used to analyze spatio-temporal phytoplankton biomass distribution. SeaWiFS chlorophyll a (chl a) images showed that spring blooms occurred in April-May near the Ieodo Station, and these waters were under the influence of Changjiang Dilute Water during July-October. Also, during the July-October period, HPLC pigments data showed increasing zeaxanthin concentrations, a marker pigment of cyanobacteria whereas increasing concentrations of various other pigments such as fucoxanthin, peridinin, prasinoxanthia alloxanthin, 19'-hexanoyloxyfucoxanthin and chlorophyll b were noted during spring blooms. Such pigment marker data were consistent with picoplankton data analyzed by flow cytometer and nano-microplankton analyzed by microscope. The pigment-CHEMTAX method was used to drive the phytoplankton group apportioned chi a. Diatoms, chlorophytes, dinoflagellates, and cryptophytes comprised 25.8, 20.7, 15.9, and 14.1%, respectively, of the total chl a in May. Average cyanobacteria concentrations in July-October contributed 25.4% of the total concentration. This was the highest percent contribution and was followed by chlorophytes, diatoms, and prymnesiophytes. This study discusses results from various methods, similarities and differences in the results among those methods, and the application range of the results from different analytical methods. Also, the study reveals a detailed phytolpankton community structure in the waters around the Ieodo Station, and suggests future monitoring considerations in relation to cell morphology, ecology and diversity factors according to taxonomic groups.

Vertical distribution and seasonal changes of phytoplankton communities in the Hoe-Dong Reservoir

  • Jung-Gon, Kim;Su-Youn, Kim;Sun-Hee, Kwon;Sangkyun, LEE;Gea-Jae, Joo
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2000.05a
    • /
    • pp.251-254
    • /
    • 2000
  • In this study, we investigated vertical distribution and seasonal changes of phytophlankton community in the Hae-Dong Reservoir from March 1999 to Feburary 2000. This reservoir is relativly small (surface area, 2.7 $km^2$) and is the source of drinking water supply to the eastern part of Pusan City. Samples were collected at 2 sites (1, 3, and 6 m; site 1, in front of the dam; site 2, inlet). The dominant group was Bacillriophyceae at both sites (over 63%), and other groups exhibited seasonal changes (high cyanobacterial density in summer; green algal communities in winter). Chrysophyceae and Dinophyceae were maintained lower level during the study period. Along the water depth, all classess of phytoplankton did not show distintive vertical distribution at both sites except during the blue-green algal bloom in the middle of July and late September. The phytoplankton community dynamics in the Hoe-Dong Reservoir was strongly affected by the hydrological factors such as concentrated precipitation and short retention time.

  • PDF

Seasonal Variation of Taxonomic Composition and Standing Crop of Phytoplankton in the Chunggye Bay (청계만 식물플랑크톤의 종조성과 개체수의 계절적 변동)

  • Jeong, Byung-Kwan;Ji, Sung;Shin, Yong-Sik
    • Journal of Environmental Science International
    • /
    • v.21 no.3
    • /
    • pp.313-326
    • /
    • 2012
  • Three embankments, namely Changpo, Bokkil and Guil, in Chunggye Bay were investigated to assess the influence of environmental changes to phytoplankton size structure, distribution of species and standing crops. Three stations was sampled near at each embankment in Nov. 2006, Feb. 2007, May 2007 and Aug. Phytoplankton were classified into net-size (>20${\mu}m$) and nano-size (<20${\mu}m$). In summer, the freshwater discharge seemed to have influence in the decrease of salinity and in the increase of turbidity, ammonium and phosphorus concentrations. Chl a concentration and phytoplankton abundance in Feb. 2007 were observed to be generally higher in all stations compared to other periods. Net-size phytoplankton was observed to be higher in Feb. 2007 and May 2007 compared to nano-sized phytoplankton. However, there was shift in phytoplankton composition in Nov. 2006 and Aug. 2007. Phytoplankton under seven class (Bacillariophyceae, Chlorophyceae, Chrysophyceae, Cryptophyceae, Cyanophyceae, Dinophyceae, Euglenophyceae) was identified during the study period. It was found out that the major phytoplankton class was Bacillariophyceae. Phytoplankton was more diverse in autumn compared to any other season. Cyanophyceae was increased in summer. In rainy season, change in physical factors (salinity, transparency) seemed to have more influence on phytoplankton growth compared to inorganic nutrients.

The Seasonal and Regional Distribution of Phytoplankton Communities in the Fisheries Resources Protection Area of Korea in 2016 (2016년 한국 수산자원보호해역에서 식물플랑크톤 군집의 계절 및 해역별 분포)

  • Yoo, Man Ho;Park, Kyung Woo;Oh, Hyun Ju;Koo, Jun Ho;Kwon, Jung No;Youn, Seok Hyun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.2
    • /
    • pp.288-293
    • /
    • 2018
  • This study was conducted to understand the characteristics of the seasonal and regional distribution of phytoplankton communities in the Fisheries Resources Protection Area of Korea (FRPA). We investigated the phytoplankton composition, abundance and dominant species collected from five different regions (Cheonsu, Tongyeong-I, Tongyeong-II, Hansan, and Jindong) in 2016. According to the results, most environmental parameters, such as temperature, salinity and nutrients, showed statistically significant seasonal differences. Suspended particulate material (SPM) only showed a statistically significant regional difference. The mean abundance of phytoplankton ranged from 13 to $4,062cells{\cdot}ml^{-1}$, with large spatio-temporal fluctuations. In particular, the bloom of phytoplankton (>$10^3cells{\cdot}ml^{-1}$) in Cheonsu Bay occurred in April and October with Skeletonema spp. and Chaetoceros socialis being the dominant species during these two seasons, respectively. The dominant species in the FRPA were diatoms (Pseudo-nitzschia spp., Skeletonema spp., and Chaetoceros pseudocriniuts) and dinoflagellates (Scrippsiella trochoidea and Tripos furca). The seasonal distribution of phytoplankton communities showed typical characteristics of coastal waters, i.e., that diatoms usually dominated in winter and autumn, while dinoflagellates tended to dominate in spring and summer. Meanwhile, the dominance rate of diatoms in the phytoplankton community in Cheonsu Bay, which is located in a high-turbidity region, was 9~27 % greater than that of diatoms in the phytoplankton community found in the south coastal waters, which is a low turbidity region.