• Title/Summary/Keyword: Phytochemicals

Search Result 392, Processing Time 0.029 seconds

Phytochemicals That Act on Synaptic Plasticity as Potential Prophylaxis against Stress-Induced Depressive Disorder

  • Soojung, Yoon;Hamid, Iqbal;Sun Mi, Kim;Mirim, Jin
    • Biomolecules & Therapeutics
    • /
    • v.31 no.2
    • /
    • pp.148-160
    • /
    • 2023
  • Depression is a neuropsychiatric disorder associated with persistent stress and disruption of neuronal function. Persistent stress causes neuronal atrophy, including loss of synapses and reduced size of the hippocampus and prefrontal cortex. These alterations are associated with neural dysfunction, including mood disturbances, cognitive impairment, and behavioral changes. Synaptic plasticity is the fundamental function of neural networks in response to various stimuli and acts by reorganizing neuronal structure, function, and connections from the molecular to the behavioral level. In this review, we describe the alterations in synaptic plasticity as underlying pathological mechanisms for depression in animal models and humans. We further elaborate on the significance of phytochemicals as bioactive agents that can positively modulate stress-induced, aberrant synaptic activity. Bioactive agents, including flavonoids, terpenes, saponins, and lignans, have been reported to upregulate brain-derived neurotrophic factor expression and release, suppress neuronal loss, and activate the relevant signaling pathways, including TrkB, ERK, Akt, and mTOR pathways, resulting in increased spine maturation and synaptic numbers in the neuronal cells and in the brains of stressed animals. In clinical trials, phytochemical usage is regarded as safe and well-tolerated for suppressing stress-related parameters in patients with depression. Thus, intake of phytochemicals with safe and active effects on synaptic plasticity may be a strategy for preventing neuronal damage and alleviating depression in a stressful life.

Modulation of Biotransformation Enzymes by Phytochemicals: Impact of Genotypes

  • Lampe Johanna W.
    • Proceedings of the Korean Society of Food Science and Nutrition Conference
    • /
    • 2004.11a
    • /
    • pp.65-70
    • /
    • 2004
  • Modulation of biotransformation enzymes is one mechanism by which a diet high in fruits and vegetable may influence cancer risk. Inhibition of cytochrome P450s (CYP) and concomitant induction of conjugating enzymes are hypothesized to reduce the impact of carcinogens in humans. Thus, exposure to types and amounts of phytochemicals may influence disease risk. Like other xenobiotics, many classes of phytochemicals are rapodly conjugated with glutathione, glucuronide, and sulfate moieties and excreted in urine and bile. In humans, circulating phytochemical levels very widely among individuals even in response to controlled dietary interventions. Polymorphisms in biotransformation enzymes, such as the glutathione S-transferases (GST), UDP-glucuronosyltransferases (UGT), and sulfotransferases (SULT), may ocntribute to the variability in phytochemical clearance and efficacy; polymorphic enzymes with lower enzyme activity prolong the half-lives of phytochmicals in vivo. Isothiocyanates (ITC) in cruciferous vegetables are catalyzed by the four major human GSTs: however reaction velocities of the enzymes differ greatly. In some observational studies of cancer, polymorphisms in the GSTMI and GSTTI genes that result in complete lack of GSTM1-1 protein, respectively, confer greater protection from cruciferous vegetable in individuals with these genotypes. Similarly, we have shown in a controlled dietary trial that levels of GST-alpha-induced by ITC-are higher in GSTMI-null individuals exposed to cruciferous vegetablse. The selectivity of glucuronosyl conjugation of flavonoids is dependent both on flavonoid structure as well as on the UGI isozyme involved in its conjuagtion. The effects of UGI polymorphisms on flavonoid clearnace have not been examind; but polymorphisms affect glucuronidation of several drugs. Given the strong interest in the chemopreventive effects of flavonoids, systematic evaluation of these polymorphic UGTs and flavonoid pharmacokinetics are warranted. Overall, these studies suggest that for phytochemicals that are metabolized by, and affect activity of, biotransformation enzymes, interactions between genetic polymorphisms in the enzymes and intake of the compounds should be considered in studies of cancer risk. Genetic polymorphisms in biotransformation enzymes may account in prat for individual variation in metabolism of a wide range of phytochemicals and their ultimate impact on health.

  • PDF

Anti-inflammatory Effects of Resveratrol, (-)-Epigallocatechin-3-gallate and Curcumin by the Modulation of Toll-like Receptor Signaling Pathways (Toll-like receptors 신호전달체계 조절을 통한 resveratrol, (-)-epigallocatechin-3-gallate, curcumin의 항염증 효과)

  • Youn, Hyung-Sun
    • Korean Journal of Food Science and Technology
    • /
    • v.39 no.5
    • /
    • pp.481-487
    • /
    • 2007
  • Toll-like receptors (TLRs) induce innate immune responses that are essential for host defenses against invading microbial pathogens, thus leading to the activation of adaptive immune responses. In general, TLRs have two major downstream signaling pathways: the MyD88- and TRIF-dependent pathways, which lead to the activation of $NF-{\kappa}B$ and IRF3. Numerous studies have demonstrated that certain phytochemicals possessing anti-inflammatory effects inhibit $NF-{\kappa}B$ activation induced by pro-inflammatory stimuli, including lipopolysaccharides and $TNF{\alpha}$. However, the direct molecular targets for such anti-inflammatory phytochemicals have not been fully identified. Identifying the direct targets of phytochemicals within the TLR pathways is important because the activation of TLRs by pro-inflammatory stimuli can induce inflammatory responses that are the key etiological conditions in the development of many chronic inflammatory diseases. In this paper we discuss the molecular targets of resveratrol, (-)-epigallocatechin-3-gallate (EGCG), and curcumin in the TLR signaling pathways. Resveratrol specifically inhibited the TRIF pathway in TLR3 and TLR4 signaling, by targetting TBK1 and RIP1 in the TRIF complex. Furthermore, EGCG suppressed the activation of IRF3 by targetting TBK1 in the TRIF-dependent signaling pathways. In contrast, the molecular target of curcumin within the TLR signaling pathways is the receptor itself, in addition to $IKK{\beta}$. Together, certain dietary phytochemicals can modulate TLR-derived signaling and inflammatory target gene expression, and in turn, alter susceptibility to microbial infection and chronic inflammatory diseases.

Dietary inclusion effects of phytochemicals as growth promoters in animal production

  • Valenzuela-Grijalva, Nidia Vanessa;Pinelli-Saavedra, Araceli;Muhlia-Almazan, Adriana;Dominguez-Diaz, David;Gonzalez-Rios, Humberto
    • Journal of Animal Science and Technology
    • /
    • v.59 no.4
    • /
    • pp.8.1-8.17
    • /
    • 2017
  • Growth promoters have been widely used as a strategy to improve productivity, and great benefits have been observed throughout the meat production chain. However, the prohibition of growth promoters in several countries, as well as consumer rejection, has led industry and the academy to search for alternatives. For decades, the inclusion of phytochemicals in animal feed has been proposed as a replacement for traditional growth promoters. However, there are many concerns about the application of phytochemicals and their impact on the various links in the meat production chain (productive performance, carcass and meat quality). Therefore, the effects of these feed additives are reviewed in this article, along with their potential safety and consumer benefits, to understand the current state of their use. In summary, the replacement of traditional growth promoters in experiments with broilers yielded benefits in all aspects of the meat production chain, such as improvements in productive performance and carcass and meat quality. Although the effects in pigs have been similar to those observed in broilers, fewer studies have been carried out in pigs, and there is a need to define the types of phytochemicals to be used and the appropriate stages for adding such compounds. In regard to ruminant diets, few studies have been conducted, and their results have been inconclusive. Therefore, it is necessary to propose more in vivo studies to determine other strategies for phytochemical inclusion in the production phases and to select the appropriate types of compounds. It is also necessary to define the variables that will best elucidate the mechanism(s) of action that will enable the future replacement of synthetic growth promoters with phytochemical feed additives.

The Inhibitory Effect of Phytochemicals on the Oxidative DNA Damage in Lymphocytes by Chrysotile

  • Ryu, A-Reum;Kim, Jum-Ji;Lee, Mi-Young
    • Journal of Applied Biological Chemistry
    • /
    • v.55 no.3
    • /
    • pp.179-184
    • /
    • 2012
  • We investigated the cytotoxicity and oxidative DNA damage by chrysotile, one of the asbestos, in this investigation. Chrysotile enhanced malondialdehyde (MDA) levels and intracellular reactive oxygen speices generation in human airway epithelial cells. Furthermore, asbestos-induced oxidative DNA damage in lymphocytes was evaluated by single cell gel electrophoresis and quantified as DNA tail moment. Notably, phytochemicals such as curcumin, berberine, and sulforaphane presented inhibitory effect on the asbestos-induced oxidative DNA damage in lymphocytes.

Antioxidant capacity of phytochemicals and their potential effects on oxidative status in animals - A review

  • Lee, M.T.;Lin, W.C.;Yu, B.;Lee, T.T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.3
    • /
    • pp.299-308
    • /
    • 2017
  • Oxidative stress suppresses animal health, performance, and production, subsequently impacting economic feasibility; hence, maintaining and improving oxidative status especially through natural nutrition strategy are essential for normal physiological process in animals. Phytochemicals are naturally occurring antioxidants that could be considered as one of the most promising materials used in animal diets in various forms. In this review, their antioxidant effects on animals are discussed as reflected by improved apparent performance, productivity, and the internal physiological changes. Moreover, the antioxidant actions toward animals further describe a molecular basis to elucidate their underlying mechanisms targeting signal transduction pathways, especially through the antioxidant response element/nuclear factor (erythroid-derived 2)-like 2 transcription system.

Reversal of Doxorubicin-induced Cardiotoxicity by Using Phytotherapy: A Review

  • Hosseini, Azar;Sahebkar, Amirhossein
    • Journal of Pharmacopuncture
    • /
    • v.20 no.4
    • /
    • pp.243-256
    • /
    • 2017
  • Doxorubicin as a chemotherapeutic drug is widely used for the treatment of patients with cancer. However, clinical use of this drug is hampered by its cardiotoxicity, which is manifested as electrocardiographic abnormalities, arrhythmias, irreversible degenerative cardiomyopathy and congestive heart failure. The precise mechanisms underlying the cardiotoxicity of doxorubicin are not clear, but impairment of calcium homeostasis, generation of iron complexes, production of oxygen radicals, mitochondrial dysfunction and cell membrane damage have been suggested as potential etiologic factors. Compounds that can neutralize the toxic effect of doxorubicin on cardiac cells without reducing the drug's antitumor activity are needed. In recent years, numerous studies have shown that herbal medicines and bioactive phytochemicals can serve as effective add-on therapies to reduce the cardiotoxic effects of doxorubicin. This review describes different phytochemicals and herbal products that have been shown to counterbalance doxorubicin-induced cardiotoxicity.

Identification and Characterization of Phytochemicals from Peanut (Arachis hypogaea L.) Pods

  • Lee, Jin-Hwan;Baek, In-Youl;Ha, Tae-Joung;Choung, Myoung-Gun;Ko, Jong-Min;Oh, Sea-Kwan;Kim, Hyun-Tae;Ryu, Hyung-Won;Park, Keum-Yong;Park, Ki-Hun
    • Food Science and Biotechnology
    • /
    • v.17 no.3
    • /
    • pp.475-482
    • /
    • 2008
  • Methanol extracts of peanut (Arachis hypogaea L.) pods were chromatographed, which yielded 3 phytochemicals 1-3 including 5,7-dihydroxychromone (1), eriodictyol (2), and 3',4',5,7-tetrahydroxyflavone (3). To confirm the presence of isolated phytochemicals, the pods extracts were performed by high performance liquid chromatography coupled with a photodiode array detector (HPLC-PDA) and a mass spectrometric detector (MSD) with electrospray ionization (ESI). Optimum extraction conditions for phytochemical contents using peanut germplasm were obtained by employing 90% MeOH for 12 hr at room temperature and phytochemicals 1-3 showed significant differences with concentrations of $407.56{\pm}23.35$, $52.92{\pm}5.11$, and $2,024.34{\pm}134.18\;{\mu}g/g$, respectively. Under this optimal conditions, the contents of phytochemicals 1-3 in peanut pods of 3 Korea cultivars including 'Jakwang', 'Daekwang', and 'Palkwang' exhibited phytochemical 3 was the highest range of $1,338.01-5,162.93\;{\mu}g/g$, followed by phytochemical 1 ($590.13-1,382.10\;{\mu}g/g$), and phytochemical 2 ($25.12-186.85\;{\mu}g/g$), respectively. Moreover, 'Jakwang' exhibited the highest contents of phytochemical (1: $1,362.10{\pm}52.49$, 2: $186.85{\pm}17.69$, and 3: $5,162.93{\pm}148.64\;{\mu}g/g$, respectively), whereas the lowest contents was found in the 'Daekwang' (1: $590.13{\pm}22.23$, 2: $25.12{\pm}2.45$, and 3: $1,338.01{\pm}62.17\;{\mu}g/g$, respectively). These results suggest that the methanol extracts of peanut pods may possess health related benefits to humans owing to various known biological activities of phytochemicals 1-3.

Carotenoids and total phenolic contents in plant foods commonly consumed in Korea

  • Yoon, Gun-Ae;Yeum, Kyung-Jin;Cho, Yoon-Suk;Chen, C.Y. Oliver;Tang, Guangwen;Blumberg, Jeffrey B.;Russell, Robert M.;Yoon, Sun;LeeKim, Yang Cha
    • Nutrition Research and Practice
    • /
    • v.6 no.6
    • /
    • pp.481-490
    • /
    • 2012
  • Phytochemicals are reported to provide various biological functions leading to the promotion of health as well as the reduced risk of chronic diseases. Fat-soluble plant pigments, carotenoids, are extensively studied micronutrient phytochemicals for their potential health benefits. It is noteworthy that specific carotenoids may be responsible for different protective effects against certain diseases. In addition, each carotenoid can be obtained from different types of plant foods. Considering the fact that the phytochemical content in foods can vary according to, but not limited to, the varieties and culture conditions, it is important to establish a database of phytochemicals in locally produced plant foods. Currently, information on individual carotenoid content in plant foods commonly consumed in Korea is lacking. As the first step to support the production and consumption of sustainable local plant foods, carotenoids and total phenolic contents of plant foods commonly consumed in Korea are presented and their potential biological functions are discussed in this review.