Browse > Article
http://dx.doi.org/10.5713/ajas.16.0438

Antioxidant capacity of phytochemicals and their potential effects on oxidative status in animals - A review  

Lee, M.T. (Department of Animal Science, National Chung Hsing University)
Lin, W.C. (Department of Animal Science, National Chung Hsing University)
Yu, B. (Department of Animal Science, National Chung Hsing University)
Lee, T.T. (Department of Animal Science, National Chung Hsing University)
Publication Information
Asian-Australasian Journal of Animal Sciences / v.30, no.3, 2017 , pp. 299-308 More about this Journal
Abstract
Oxidative stress suppresses animal health, performance, and production, subsequently impacting economic feasibility; hence, maintaining and improving oxidative status especially through natural nutrition strategy are essential for normal physiological process in animals. Phytochemicals are naturally occurring antioxidants that could be considered as one of the most promising materials used in animal diets in various forms. In this review, their antioxidant effects on animals are discussed as reflected by improved apparent performance, productivity, and the internal physiological changes. Moreover, the antioxidant actions toward animals further describe a molecular basis to elucidate their underlying mechanisms targeting signal transduction pathways, especially through the antioxidant response element/nuclear factor (erythroid-derived 2)-like 2 transcription system.
Keywords
Oxidative Stress; Phytochemicals; Antioxidant Molecules; Animals;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Tilki M, Saatci M, Kirmizibayrak T, Aksoy A. Effect of age on growth and carcass composition of native Turkish geese. Archiv fur Geflugelkunde 2005;69(Suppl):E77-83.
2 Jung KA, Kwak MK. The Nrf2 System as a potential target for the development of indirect antioxidant. Molecules 2010;15:7266-91.   DOI
3 Mamede AC, Tavares SD, Abrantes AM, et al. The role of vitamins in cancer: a review. Nutr Cancer 2011;63:479-94.   DOI
4 Barve A, Khor TO, Hao X, et al. Murine prostate cancer inhibition by dietary phytochemicals - curcumin and phenyethylisothiocyanate. Pharm Res 2008;25:2181-9.   DOI
5 Hu R, Saw CL, Yu R, Kong AN. Regulation of NF-E2-related factor 2 signaling for cancer chemoprevention: antioxidant coupled with anti-inflammatory. Antioxid Redox Signal 2010;13:1679-98.   DOI
6 Manach C, Scalbert C, Morand C, Remezy C, Jimenez L. Polyphenols: Food sources and bioavailability. Am J Clin Nutr 2004;79:727-47.   DOI
7 Lopez-Velez M, Martinez-Martinez F, Del Valle-Ribes C. The study of phenoliccompounds as natural antioxidants in wine. Crit Rev Food Sci Nutr 2003;43:233-44.   DOI
8 Cao Z, Li Y. Potent induction of cellular antioxidants and phase 2 enzymes by resveratrol in cardiomyocytes: protection against oxidative and electrophilic injury. Eur J Pharmacol 2004;489:39-48.   DOI
9 Rubiolo JA, Mithieux G, Vega FV. Resveratrol protects primary rat hepatocytes against oxidative stress damage: activation of the Nrf2 transcription factor and augmented activities of antioxidant enzymes. Eur J Pharmacol 2008;591:66-72.   DOI
10 Wu CH, Chen SC, Ou TT, Chyau CC, Chang YC, Wang CJ. Mulberry leaf polyphenol extracts reduced hepatic lipid accumulation involving regulation of adenosine monophosphate activated protein kinase and lipogenic enzymes. J Funct Foods 2013;5:1620-32.   DOI
11 Chan KC, Ho HH, Huang CN, Chen MC, Wang CJ. Mulberry leaf extract inhibits vascular smooth muscle cell migration involving a block of small GTPase and Akt/NF-kappaB signals. J Agric Food Chem 2009;57:9147-53.   DOI
12 Gundogdu M, Muradoglu F, Gazioglu Sensoy RI, Yilmaz H. Determination of fruit chemical properties of M. nigra L., M. alba L. and M. rubra L. by HPLC. Sci Hortic 2011;132:37-41.   DOI
13 Andallu B, Shankaran M, Ullagaddi R, Iyer U. In vitro free radical scavenging and in vivo antioxidant potential of mulberry (Morus indica L.) leaves. J Herb Med 2014;4:10-17.   DOI
14 Lin WC, Lee MT, Chang YL, Shih CH, Chang SC, Yu B, Lee TT. Effects of mulberry leaves on production performance and the potential modulation of antioxidative status in laying hens. Poult Sci 2016; DOI: 10.3382/ps/pew350.   DOI
15 Barnes S. Role of phytochemicals in prevention and treatment of prostate cancer. Epidemiol Rev 2001;23:201-5.
16 Bergman M, Varshavsky L, Gottlieb HE, Grossman S. The antioxidant activity of aqueous spinach extract: chemical identification of active fractions. Phytochemistry 2001;58:143-52.   DOI
17 Toniolo P, Van Kappel AL, Akhmedkhanov A, et al. Serum carotenoids and breast cancer. Am J Epidemiol 2001;153:1142-7.   DOI
18 Aeschbach R, Loliger J, Scott BC, et al. Antioxidant actions of thymol, carvacrol, 6-gingerol, zingerone and hydroxytyrosol. Food Chem Toxicol 1994;32:31-6.   DOI
19 Shi J, Yu J, Pohorly JE, Kakuda Y. Polyphenolics in grape seeds-biochemistry and functionality. J Med Food 2003;6:291-9.   DOI
20 Wang H, Cao G, Prior RL. Total antioxidant capacity of fruits. J Agric Food Chem 1996;44:701-5.   DOI
21 Rahman I, Biswas SK, Kirkham PA. Regulation of inflammation and redox signaling by dietary polyphenols. Biochem Pharmacol 2006; 72:1439-52.   DOI
22 Tanigawa S, Fujii M, Hou DX. Action of Nrf2 and Keap1 in AREmediated NQO1 expression by quercetin. Free Radical Bio Med 2007;42:1690-703.   DOI
23 Cuvelier ME, Richard H, Berset C. Comparison of the antioxidative activity of some acid-phenols: structure-activity relationship. Biosci Biotechnol Biochem 1992;56:324-5.   DOI
24 Kahkonen MP, Hopia AI, Vuorela HJ, et al. Antioxidant activity of plant extracts containing phenolic compounds. J Agric Food Chem 1999;47:3954-62.   DOI
25 Han X, T Shen, H Lou. Dietary polyphenols and their biological significance. Int J Mol Sci 2007;8:950-88.   DOI
26 Shen GG, Kong AN. Nrf2 plays an important role in coordinated regulation of Phase II drug metabolism enzymes and Phase III drug transporters. Biopharm Drug Dispos 2009;30:345-55.   DOI
27 Baird L, Dinkova-Kostova AT. The cytoprotective role of the Keap1-Nrf2 pathway. Arch Toxicol 2011;85:241-72.   DOI
28 Kobayashi A, Kang MI, Watai Y, et al. Oxidative and electrophilic stresses activate Nrf2 through inhibition of ubiquitination activity of Keap1. Mol Cell Biol 2006;26:221-9.   DOI
29 Takaya K, Suzuki T, Motohashi H, et al. Validation of the multiple sensor mechanism of the Keap1-Nrf2 system. Free Radical Bio Med 2012;53:817-27.   DOI
30 Saw CL, Yang AY, Cheng DC, et al. Pharmacodynamics of ginsenosides: antioxidant activities, activation of Nrf2, and potential synergistic effects of combinations. Chem Res Toxicol 2012;25:1574-80.   DOI
31 Beeche GR. Overview of dietary flavonoids: nomenclature, occurrence and intake. J Nutr 2003;133(Suppl):E3248-54.   DOI
32 Sahin K, Tuzcu M, Gencoglu H, et al. Epigallocatechin-3-gallate activates Nrf2/HO-1 signaling pathway in cisplatin-induced nephrotoxicity in rats. Life Sci 2010;87:240-5.   DOI
33 Romeo L, Intrieri M, D'Agata V, et al. The major green tea polyphenol, (-)-epigallocatechin-3-gallate, induces heme oxygenase in rat neurons and acts as an effective neuroprotective agent against oxidative stress. J Am Coll Nutr 2009;28(Suppl_:E492-9.   DOI
34 Katiyar SK, Afaq F, Perez A, Mukhtar H. Green tea polyphenol (-)-epigallocatechin-3-gallate treatment of human skin inhibits ultraviolet radiation-induced oxidative stress. Carcinogenesis 2001; 22:287-94.   DOI
35 Chapple IL. Reactive oxygen species and antioxidants in inflammatory diseases. J Clin Periodontol 1997;24:287-96.   DOI
36 Lokaewmanee K, Yamauchi K, Komori T, Saito K. Effects on egg yolk colour of paprika or paprika combined with marigold flower extracts. Ital J Anim Sci 2010;9:356-9.
37 Akdemir F, Orhan C, Sahin N, Sahin DrK, Hayirli A. Tomato powder in laying hen diets: effects on concentrations of yolk carotenoids and lipid peroxidation. Br Poult Sci 2012;53:675-80.   DOI
38 Calislar S, G Uygur. Effects of dry tomato pulp on egg yolk pigmentation and some egg yield characteristics of laying hens. J Anim Vet Adv 2010;9:96-8.   DOI
39 Sahin N, Orhan C, Tuzcu M, Sahin K, Kucuk O. The effects of tomato powder supplementation on performance and lipid peroxidation in quail. Poult Sci 2008;87:276-83.   DOI
40 Sahin K, Orhan C, Tuzcu M, et al. Epigallocatechin-3-gallate prevents lipid peroxidation and enhances antioxidant defense system via modulating hepatic nuclear transcription factors in heat-stressed quails. Poult Sci 2010;89:2251-8.   DOI
41 Wang RJ, Li DF, Bourne S. Can 2000 years of herbal medicine history help us solve problems in the year 2000? Biotechnology in the Feed Industry. Proceedings of Alltech's 14th Annual Symposium. Nottingham, UK: Nottingham University Press; 1998. pp. 273-291.
42 Jebelli AJ, Ghazvinian K, Mahdavi A, Vayeghan AJ, Staji H, Khaligh SG. The effect of dietary Zataria multiflora boiss: Essential oil supplementation on microbial growth and lipid peroxidation of broiler breast fillets during refrigerated storage. J Food Process Preserv 2013;37:881-8.   DOI
43 Lee TT, Chen CL, Shieh ZH, Lin JC, Yu B. Study on antioxidant activity of Echinacea purpurea L. extracts and its impact on cell viability. Afr J Biotechnol 2009;8:5097-105.
44 Matthias A, Banbury L, Bone KM, Leach DN, Lehmann RP. Echinacea alkylamides modulate induced immune responses in T-cells. Fitoterapia 2008;79:53-8.   DOI
45 Meng Q, Velalar CN, Ruan R. Effects of epigallocatechin-3-gallate on mitochondrial integrity and antioxidative enzyme activity in the aging process of human fibroblast. Free Radical Bio Med 2008;44: 1032-41.   DOI
46 Wei H, Zhang X, Zhao JF, et al. Scavenging of hydrogen peroxide and nhibition of ultraviolet light-induced oxidative DNA damage by aqueous extracts from green and black teas. Free Radical Bio Med 1999;26:1427-35.   DOI
47 Ali NAL, Mohammed AB, Allow AA. Effect of adding different levels of Lycopene to the ration on some lipid profile traits of the Laying hens ISA-Brown. J Biol Agric Healthc 2014;4:10-9.
48 Palozza P, Catalano A, Simone R, Cittadini A. Lycopene as a guardian of redox signalling. Acta Biochim Pol 2012;59:221-5.
49 Linnewiel K, Ernst H, Caris-Veyrat C, et al. Structure activity relationship of carotenoid derivatives in activation of the electrophile/antioxidant response element transcription system. Free Radic Biol Med 2009;47:659-67.   DOI
50 Lian F, Wang XD. Enzymatic metabolites of lycopene induce Nrf2-mediated expression of phase II detoxifying/antioxidant enzymes in human bronchial epithelial cells. Int J Cancer 2008;123:1262-8.   DOI
51 He HJ, Wang GY, Gao Y, et al. Curcumin attenuates Nrf2 signaling defect, oxidative stress in muscle and glucose intolerance in high fat diet-fed mice. World J Diabetes 2012;3:94-104.   DOI
52 Tapia E, Zatarain-Barron ZL, Hernandez-Pando R, et al. Curcumin reverses glomerular hemodynamic alterations and oxidant stress in 5/6 nephrectomized rats. Phytomedicine 2013;20:359-66.   DOI
53 Garg R, Maru G. Dietary curcumin enhances benzo(a)pyrene-induced apoptosis resulting in a decrease in BPDE-DNA adducts in mice. J Environ Pathol Toxicol Oncol 2009;28:121-31.   DOI
54 von Schantz T, Bensch S, Grahn M, Hasselquist D, Wittzell H. Good genes, oxidative stress and condition-dependent sexual signals. Proc Biol Sci 1999;266:1-12.   DOI
55 Ajakaiye JJ, Perez-Bello A, Mollineda-Trujillo A. Impact of heat stress on egg quality in layer hens supplemented with l-ascorbic acid and dl-tocopherol acetate. Vet Arhiv 2011;81:119-32.
56 Sahin K, Orhan C, Smith MO, Sahin N. Molecular targets of dietary phytochemicals for the alleviation of heat stress in poultry. Worlds Poult Sci J 2013;69:113-24.   DOI
57 Lin MJ, Chang SC, Jea YS, et al. In vitro antioxidant capability and performance assessment of White Roman goose supplemented with dried Toona sinensis. J Appl Anim Res 2016;44:395-402.   DOI
58 Joseph AM, Anthony TT. Food additive toxicology. NY: Marcel Dekker; 1994. p. 89-110.
59 Ansari J, Khan SH, Haq Au, Yousaf M. Effect of the levels of Azadirachta indica dried leaf meal as phytogenic feed additive on the growth performance and haemato-biochemical parameters in broiler chicks. J Appl Anim Res 2012;40:336-45.   DOI
60 Lee TT, Yu B. Application of biologics to feedstuff. Afr J Biotechnol 2013;12:526-30.
61 Lee TT, Ciou JY, Chen CL, Yu B. Effect of Echinacea purpurea L. on oxidative status and meat quality in Arbor Acres broilers. J Sci Food Agric 2013;93:166-72.   DOI
62 Aggarwal BB, Shishodia S. Molecular targets of dietary agents for prevention and therapy of cancer. Biochem Pharmacol 2006;71: 1397-421.   DOI
63 Kelloff GJ, Crowell JA, Steele VE, et al. Progress in cancer chemoprevention: development of diet-derived chemopreventive agents. J Nutr 2000;130 Suppl:E467-71.   DOI
64 Percival SS. Use of Echinacea in medicine. Biochem Pharmacol 200; 60:155-8.   DOI
65 Sullivan AM, Laba JG, Moore JA, Lee TD. Echinacea induced macrophage activation. Immunopharmacol Immunotoxicol 2008;30:553-74.   DOI
66 Jahanian E, Jahanian R, Rahmani HR, Alikhani M. Dietary supplementation of Echinacea purpurea powder improved performance, serum lipid profile, and yolk oxidative stability in laying hens. J Appl Anim Res 2017;45:45-51.   DOI
67 Thygesen L, Thulin J, Mortenson A, Skibsted LH, Molgaard P. Antioxidant activity of cichoric acid and alkamides from Echinacea purpurea, alone and in combination. Food Chem 2007;101:74-81.   DOI
68 Ruberto G, Renda A, Daquino C, et al. Polyphenols constituents and antioxidant activity of grape pomace from five Sicilian red grape cultivars. Food Chem 2007;100:203-10.   DOI
69 Yilmaz Y, Toledo RT. Major flavonoids in grape seeds and skins: Antioxidant capacity of catechin, epicatechin, and gallic acid. J Agric Food Chem 2004;52:255-60.   DOI
70 Brenes A, Viveros A, Goni I, et al. Effect of grape pomace concentrate and vitamin E on digestibility of polyphenols and antioxidant activity in chickens. Poult Sci 2008;87:307-16.   DOI
71 Ahn JH, Grun IU, Fernando LN. Antioxidant properties of natural plant extracts containing polyphenolic compounds in cooked ground beef. J Food Sci 2002;67:1364-9.   DOI
72 Hughes RJ, Brooker JD, Smyl C. Growth rate of broiler chickens given condensed tannins extracted from grape seed. Aust Poult Sci Symp 2005;67:65-8.
73 Lau DW, King AJ. Pre- and post-mortem use of grape seed extract in dark poultry meat to inhibit development of thiobarbituric acid reactive substances. J Agric Food Chem 2003;51:1602-7.   DOI
74 Cheng H, Liu W, Ai X. Protective effect of curcumin on myocardial ischemia reperfusion injury in rats. Zhong Yao Cai 2005;28:920-2.
75 Ahmadi F. Effect of Turmeric (Curcumin longa) powder on performance, oxidative stress state and some of blood parameters in broilers fed on diets containing aflatoxin. Glob Vet 2010;5:312-7.
76 Balogun E, Hoque M, Gong P, et al. Curcumin activates the haem oxygenase-1 gene via regulation of Nrf2 and the antioxidant-responsive element. Biochem J 2003;371:887-95.   DOI
77 Dickinson DA, Iles KE, Zhang H, Blank V, Forman HJ. Curcumin alters EpRE and AP-1 binding complexes and elevates glutamatecysteine ligase gene expression. FASEB J 2003;17:473-5.   DOI
78 Farombi EO, Shrotriya S, Na HK, Kim SH, Surh YJ. Curcumin attenuates dimethylnitrosamine-induced liver injury in rats through Nrf2-mediated induction of heme oxygenase-1. Food Chem Toxicol 2008;46:1279-87.   DOI
79 Surh YJ, Chun KS. Cancer chemopreventive effects of curcumin. Adv Exp Med Biol 2007;595:149-72.
80 Mancuso C, Barone E. The heme oxygenase/biliverdin reductase pathway in drug research and development. Curr Drug Metab 2009; 10:579-94.   DOI
81 Liu Y, Chan F, Sun H, et al. Resveratrol protects human keratinocytes HaCaT cells from UVA-induced oxidative stress damage by downregulating Keap1 expression. Eur J Pharmacol 2011;650:130-7.   DOI
82 Palsamy P, Subramanian S. Resveratrol protects diabetic kidney by attenuating hyperglycemia-mediated oxidative stress and renal inflammatory cytokines via Nrf2-Keap1 signaling. Biochim Biophys Acta 2011;1812:719-31.   DOI
83 Ungvari Z, Bagi Z, Feher A, et al. Resveratrol confers endothelial protection via activation of the antioxidant transcription factor Nrf2. Am J Physiol Heart Circ Physiol 2010;299:18-24.   DOI
84 Na HK, Surh YJ. Modulation of Nrf2-mediated antioxidant and detoxifying enzyme induction by the green tea polyphenol EGCG. Food Chem Toxicol 2008;46:1271-8.   DOI
85 Sahin K, Orhan C, Akdemir F, et al. Tomato powder supplementation activates Nrf-2 via ERK/Akt signaling pathway and attenuates heat stress-related responses in quails. Anim Feed Sci Technol 2011; 165:230-7.   DOI
86 Sahin K, Orhan C, Akdemir F, Tuzcu M, Sahin N. Resveratrol protects quail hepatocytes against heat stress: modulation of the Nrf2 transcription factor and heat shock proteins. J Anim Physiol Anim Nutr 2012;96:66-74.   DOI
87 Sahin K, Orhan C, Tuzcu Z, Tuzcu M, Sahin N. Curcumin ameloriates heat stress via inhibition of oxidative stress and modulation of Nrf2/HO-1 pathway in quail. Food Chem Toxicol 2012;50:4035-41.   DOI
88 Tuzcu M, Sahin N, Karatepe M, et al. Epigallocatechin-3-gallate supplementation can improve antioxidant status in stressed quail. Br Poult Sci 2008;49:643-8.   DOI
89 Abbas ZK, Saggu S, Sakeran MI, et al. Phytochemical, antioxidant and mineral composition of hydroalcoholic extract of chicory (Cichorium intybus L.) leaves. Saudi J Biol Sci 2015;22:322-6.   DOI
90 Cardozo LF, Pedruzzi LM, Stenvinkel P, et al. Nutritional strategies to modulate inflammation and oxidative stress pathways via activation of the master antioxidant switch Nrf2. Biochimie 2013;95:1525-33.   DOI
91 Tsao R, Deng Z. Separation procedures for naturally occurring antioxidant phytochemicals. J Chromatogr B 2004;812:85-99.   DOI
92 Calabrese V, Cornelius C, Mancuso C, et al. Cellular stress response: A novel target for chemoprevention and nutritional neuroprotection in aging, neurodegenerative disorders and longevity. Neurochem Res 32008;3:2444-71.   DOI
93 Huang CW, Lee TT, Shih YC, Yu B. Effects of dietary supplementation of Chinese medicine herbs on polymorphonuclear neutrophil immune activity and small intestinal morphology in weanling pigs. J Anim Physiol Anim Nutr 2012;96:285-94.   DOI
94 Chao PY, Lin SY, Lin KH, et al. Antioxidant activity in extracts of 27 indigenous Taiwanese vegetables. Nutrients 2014;6:2115-30.   DOI
95 Hseu YC, Chang WH, Chen CS, et al. Antioxidant activities of Toona sinensis leaves extracts using different antioxidant models. Food Chem Toxicol 2008;46:105-14.   DOI
96 Yang H, Gu Q, Gao T, et al. Flavonols and derivatives of gallic acid from young leaves of Toona sinensis (A. Juss.) Roemer and evaluation of their anti-oxidant capacity by chemical methods. Pharmacogn Mag 2014;10:185-90.   DOI