• Title/Summary/Keyword: Physiological model.

Search Result 847, Processing Time 0.033 seconds

Effects of Herbal medicine on Physiological Responses in Ovariectomized Rats and SAM P6 Mice (한약이 난소제거 흰쥐와 SAM P6 생쥐의 생리활성에 미치는 영향)

  • Kim, Chung-Sook;Kim, Jin-Sook;Kim, Yun-Tai;Lee, Je-Hyun
    • YAKHAK HOEJI
    • /
    • v.42 no.4
    • /
    • pp.370-381
    • /
    • 1998
  • The effect of herbal medicine on osteoporosis was studied using ovariectomized rats as an animal model of Type I osteoporosis and SAM P6 mice as that of Type II. Each traditiona l boiling water extract of Achyranthis Radix, Psoraleae Radix, Rehmanniae Radix Preparat, Corni Fructus and Mycelia of Ganoderma, and systemic water fraction of Astragali Radix was given 5g(dried herbal weight)/kg/day p.o. for 30 days in each group of ovariectomized rats, SAM R1 and SAM P6. The extract of Cervi parvum Cornu was given for 14 days only. One ml of blood was taken by tail vein at day 0, 7, 14, 21 and 30 days after administration of the extract. Plasma levels of alkaline phosphatase, calcium, creatinine,inorganic phosphate, blood urea nitrogen, cortisol, total $T_3\;and\;total\;T_4$ were measured. In ovariectomized rats, administration of Achyranthis Radix or Corni Fructus decreased in alkaline phosphatase and that of Achyranthis Radix or Psoraleae Radix decreased in calcium comparing to the control (p<0.05). The administration of Psoralese Radix decreased in calcium and increased in urea comparing to day o(P<0.05)(Table I). There were not much changes in plasma calcium, inorganic phosphate, and alkaline phosphatase concentrations after uptake of these herbal medicine used in SAM P6(Table III). However, administration of Astragali Radix altered plasma inorganic phosphate and creatinine levels in SAM R1(p<0.01)(Table UU). The administration of Corni Fructus or Psoralease Radix induced the changes in plasma concentrations of cortisol, total $T_3$ and total $T_4$ in Type I(p<0.05) (Table IV). The uptake of Cervi parvum Cornu increased in total $T_3$ concentration and that of Mycelia of Ganodtragali Radix in SAM P6. However, the uptake of Mycelia of Ganoderma induced changes in cortisol and $T_4$ concentrations in SAM R1(p<0.05). Thus, there were significant differences in responses of herbal medicine in different types of osteoporosis.

  • PDF

Cortical bone strain during the placement of orthodontic microimplant studied by 3D finite element analysis (3차원 유한요소법을 이용한 교정용 마이크로임플란트 식립 시의 피질골 스트레인 해석)

  • Nam, Ok-Hyun;Yu, Won-Jae;Kyung, Hee-Moon
    • The korean journal of orthodontics
    • /
    • v.38 no.4
    • /
    • pp.228-239
    • /
    • 2008
  • Objective: The aim of this study was to evaluate the strain induced in the cortical bone surrounding an orthodontic microimplant during insertion. Methods: A 3D finite element method was used to model the insertion of a microimplant (AbsoAnchor SH1312-7, Dentos Co., Daegu, Korea) Into 1 mm thick cortical bone with a pre-drilled hole of 0.9 mm in diameter. A total of 1,800 analysis steps was used to simulate the 10 turns and 5 mm advancement of the microimplant. A series of remesh in the cortical bone was allowed to accommodate the change in the geometry accompanied by the implant insertion. Results: Bone strains of well higher than 4,000 microstrain, the reported upper limit for normal bone remodeling, was observed in the bone along the whole length of the microimplant. At the bone in the vicinity of the screw tip, strains of higher than 100% was recorded. The insertion torque was calculated at approximately 1.2 Ncm which was slightly lower than those measured from the animal experiment using rabbit tibias. Conclusions: The insertion process of a microimplant was successfully simulated using the 3D finite element method which showed that bone strains from a microimplant insertion might have a negative impact on physiological remodeling of bone.

Animal Models for the IGF-1 Signal System in Longevity (장수와 관련된 IGF-1 신호 시스템을 연구하기 위한 동물 모델)

  • Kwak, Inseok
    • Journal of Life Science
    • /
    • v.22 no.10
    • /
    • pp.1428-1433
    • /
    • 2012
  • Longevity is an exciting but difficult subject to study because it is determined by complex processes that require the coordinated action of several genetic factors as well as physiological and environmental influences. Genetic approaches have been applied to animal models to identify the molecular mechanism responsible for longevity. Several experimental model organisms obtained over the last decades suggest that the complete deletion of a single gene by gene targeting has proven to be an invaluable tool for the discovery of the mechanisms underlying longevity. The first discovery of long-lived mutants came from Caenorhabditis elegans research, which identified the insulin/IGF-1 pathway as responsible for longevity in this worm. IGF-1 is a multifunctional polypeptide that has sequence similarity to insulin and is involved in normal growth and development of cells. Several factors in the IGF-1 system have since been studied by gene targeting in the control of longevity in lower species, including nematode and fruit fly. In addition, significant progress has been made using mice models to extend the lifespan by targeted mutations that interfere with growth hormone/IGF-1 and IGF-1 signaling cascades. A recent finding that IGF-1 is involved in aging in mice was achieved by using liver-specific knockout mutant mice, and this clearly demonstrated that the IGF-1 signal pathway can extend the lifespan in both invertebrates and vertebrate models. Although the underlying molecular mechanisms for the control of longevity are not fully understood, it is widely accepted that reduced IGF-1 signaling plays an important role in the control of aging and longevity. Several genes involved in the IGF-1 signaling system are reviewed in relation to longevity in genetically modified mice models.

Antimetastatic and Antitumor Effect of Ginsenoside Rh2 and ${\beta}-glucan$ in Mice (Ginseniside Rh2와 베타 글루칸의 암세포 전이억제효과)

  • Lee, Chang-Hwan;Won, Eun-Kyung;Sung, Hyun-Jea;Choung, Se-Young
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.21 no.4
    • /
    • pp.856-859
    • /
    • 2007
  • We have investigated the antimetastatic and antitumor effects of Ginsenoside Rh2 and ${\beta}-glucan$ unsing an experimental metastatic mouse model intravenously injected with B 16 melanoma F 10 cells. Animal groups are divided into six groups according to the dosage of drug administration and the kind of drugs. The groups are control, ${\beta}-glucan$ with 50, 100 and 200 mg/kg, Geinsenoside Rh2 50 mg/kg, and ${\beta}-glucan$ 50 mg/kg + Ginsenoside Rh2 50 mg/kg. Oral administration of various concentration of ${\beta}-glucan$( 50, 100, and 200 mg/kg) were reduced the lung- metastatics induced by metastatic B16 melanoma F 10 cells injection with a dose dependent manner in the syngenic mice. At same dosage group, Ginsenoside Rh2 (50 mg/kg) has more antimetastatic effect than the ${\beta}-glucan$(50 mg/kg). The highest antimetastatic effects was observed in the ${\beta}-glucan$ 50 mg/kg + Ginsenoside Rh2 50 mg/kg group and has a similar tendency in the anti-tumor effects, including decrease of the average tumor weight and increase of the average survival rate. There are no differences of the average tumor weights were apparent in the ${\beta}-glucan$ groups, however there were little decrease of the average tumor weight in Ginsenoside 50 mg/kg group and ${\beta}-glucan$ 50 mg/kg + Ginsenoside Rh2 50 mg/kg group than that of the control group. The rate of average survival rate in the ${\beta}-glucan$ 50 mg/kg + Ginsenoside Rh2 50 mg/kg group, ${\beta}-glucan$ 200 mg/kg, ${\beta}-glucan$ 100 mg/kg and ${\beta}-glucan$ 50 mg/kg, and Ginsenoside 50 mg/kg groups were highly in order. These data suggest that antimetastatic and antitumor effect of combination of Ginsenodide Rh2 and ${\beta}-glucan$ be the highest in this study.

Influence of Kamijihwang-hwan on the Hypoxic Damage of Cultured Cerebral Neurons from mouse and SK-N-MC cells (가미지황환이 저산소성 신경세포 손상에 미치는 영향)

  • Kyung Baek Yeun;Ju Sung Min;Kim Kun Jun;Kim Dae Keun;Kang Jeong Ho;Lee Young Chan;Lee Jun;Kim Young Mok;Jeon Byung Hun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.17 no.4
    • /
    • pp.1082-1091
    • /
    • 2003
  • To elucidate the neuroprotective effect of Kamijihwang-hwan(KSH) on nerve cells damaged by hypoxia, the cytotoxic effects of exposure to hypoxia were determined by XTT, NR, MTT and SRB asssay. The activity of catalase and SOD was measured by spectrophometry, and TNF-α and PKC activity was measured after exposure to hypoxia and treatment of Kamijihwang-hwan(KSH) water extract(KJHWE). Also the neuroprotective effect of KJHWE was researched for the elucidation of neuroprotective mechanism. The results were as follows ; Hypoxia decreased cell viability measured by XTT, NR assay when cultured cerebral neurons were exposed to 95% N2/5% CO₂ for 2~26 minutes in these cultures and KJHWE inhibited the decrease of cell viability. H₂O₂ treatment decreased cell viability measured by MTT, and SRB assay when cultured cerebral neurons were exposed to 1-80 uM for 6 hours, but KJHWE inhibited the decrease of cell viability. Hypoxia decreased catalase and SOD activity, and also TNF-α and PKC activity in these cultured cerebral neurons, but KJHWE inhibited the decrease of the catalase and SOD activity in these cultures. Hypoxia triggered the apoptosis via caspase activation and internucleosomal DNA fragmentation. Also hypoxia stimulate the release of cytochrome c form mitochondria. KJHWE inhibited the apoptosis via caspase activation induced by hypoxia. From these results, it can be suggested that brain ischemia model induced hypoxia showed neurotoxity on cultured mouse cerebral neurons, and the KJHWE has the neuroprotective effect in blocking the neurotoxity induced by hypoxia in cultured mouse cerebral neurons.

Anti-atherosclerotic Effect of the Methanol Extract of Sorbus commixta Cortex in the High Cholesterol-Diet Rats

  • Kang, Dae-Gill;Sohn, Eun-Jin;Kim, Jin-Sook;Lee, Yun-Jung;Moon, Mi-Kyoung;Lee, An-Sook;An, Jun-Seok;Lee, Ho-Sub
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.20 no.5
    • /
    • pp.1337-1345
    • /
    • 2006
  • Hypercholesterolemia is a pivotal pathogenic factor for the development and maintenance of atherosclerosis. The present study was designed to evaluate whether the methanol extract of Sorbus commixta cortex (MSC) restores vascular dysfunction in association with the aortic expressions of proinflarnmatory and adhesion molecules in high cholesterol (HC) diet-rats. Chronic treatment with low (100 mg/kg/day) or high doses (200 mg/kg/day) of MSC lowered the increase in plasma levels of triglyceride (TG) and low-density lipoprotein (LDL) cholesterol induced by a cholesterol-enriched diet without affecting on the plasma level of high density lipoprotein (HDL)-cholesterol. Vascular tone attenuated in the HC-diet rats was restored by administration with MSC. Treatment with MSC also suppressed the HC-induced increase in the monocyte chemoattractant protein-1 (MCP-1) and nuclear factor-$_K$B (NF-$_K$B) p65 expressions as well as expressions levels of adhesion molecules including intercellular adhesion molecule-1 (ICAM-1), vascular cell adhesion molecule-1 (ICAM-1), and E-selectin in aorta. The present study also showed that MSC inhibited the HC-mediated induction of ET-1 and ACE expression. In histopathological examination, aortic segments in the HC-diet rat revealed thickening intima and media, which were blocked by administration with MSC. Taken together, MSC could suppress the development of atherosclerosis in the HC-diet rat model through the inhibition of the aortic expression levels of pro-inflammatory and adhesion molecules.

Effects of Geiji-Bokryung-Hwan on eNOS, nNOS, Caveolin-1 and bFGF Protein Expressions and the Endothelial Cells of the Corpus Cavernosum in Hypercholesterolemic Rat

  • Kim Jae-Woo;Son Soo-Gon;Sa Eun-Ho;Kim Cherl-Ho;Park Won-Hwan
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.20 no.1
    • /
    • pp.174-180
    • /
    • 2006
  • We examine the effect of Geiji-Bokryung-Hwan(GBH) on erectile function in a rat model of hypercholesterolemic erectile dysfunction. GBH, a drug preparation consisting of five herbs of Cinnamomi Ramulus (Geiji), Poria Cocos (Bokryun), Mountan Cortex Radicis (Mokdanpi), Paeoniae Radix (Jakyak), and Persicae Semen (Doin) is a traditional Korean herbal medicine that is widely used in the treatment of atherosclerosis-related disorders. In this study, 3-month-old Sprague-Dawley rats were used. The 6 rats control animals were fed a normal diet and the other 18 rats were fed 1% cholesterol diet for 3 months. After 1 months, GBH was added to the drinking water of the treatment group of 12 rats but not the cholesterol only group of 6 rats. Of the 12 rats 6 received 30 mg/kg per day (group 1) and 6 received 60 mg/kg per day (group 2) of GBH. At 3 months erectile function was evaluated with cavernous nerve electrostimulation in all animals. Penile tissues were collected for electron microscopy, and to perform Western blot for endothelial nitric oxide synthase (eNOS), neuronal nitric oxide synthase (nNOS), basic fibroblast growth factor (bFGF) and caveolin-1. Systemic arterial pressure was not significantly different between the animals that were fed the 1% cholesterol diet and the controls. Conversely erectile function was not impaired in the herbal medicine treated rats. Electron microscopy showed many caveolae with fingerlike processes in the cavernous smooth muscle and endothelial cell membranes in control and treated rats but not in the cholesterol only group of rats. Western blot showed differences among groups in protein expression for eNOS, nNOS, caveolin-1 and bFGF protein expression in penile tissue. Increased eNOS and nNOS protein expressions dy high cholesterol diet were significantly decreased in group 1 and group 2. Interestingly, caveolin-1 and bFGF protein expression was significantly higher in groups 1 and 2 than in the cholesterol only and control groups.

Hypolipidemic and Anti-oxidant Effects of Chunghyl Plus in Type II Diabetic Mice Model (제2형 당뇨 마우스 모델에서 청혈플러스의 항고지혈 및 항산화효과)

  • Choi, Koh Eun;Seol, In Chan;Kim, Yoon Sik;Cho, Hyun Kyoung;Yoo, Ho Ryong
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.30 no.3
    • /
    • pp.164-176
    • /
    • 2016
  • This study was perfomed to investigate the effects of Chunghyul-plus(CHP) on oxidative damage and hyperlipidemia in db/db mouse. After treatment with CHP, safety in cytotoxicity, heavy metal toxicity, production of reactive oxygen species(ROS), nitric oxide (N0) and proinflammatory cytokine IL-Ib, TNF-a, IL-6 in RAW 264.7 cells. Serum total cholesterol, LDL cholesterol, HDL cholesterol, triglyceride, insulin, GLP-1, glucose, food intake, body weight, organ weight, AST, ALT, ALP, BUN, creatine and histologic change of liver and aorta were measured in db/db mouse after oral administration of CHP. CHP showed safety in cytotoxicity and toxicity of liver and kidney for logn time administration. CHP increased the DPPH and ABTS radical scavenging activity. CHP showed significant inhibitory effect on reactive oxygen species (ROS), and showed inhibitory effect on nitiric oxide(NO) compared to control group. CHP decreased cytokine IL-6 production significantly, and decreased IL-1β and TNF-α compared to control group. CHP decreased body and organ weitht, intake food, and glucose levels compared to control group. CHP decreased total cholesterol and triglyceride significantly, and decreased LDL-cholesterol levels and increased HDL-cholesterol levels compared to control group. CHP decreased atherogenic index and cardiac risk factor significantly. CHP increased serum insulin and GLP-1 compared to control group. In histologic examination, lipophagy in the liver and aorta decreased in CHP treated mice and the cell was regular and boundary of vessel wall was clear compared to control group. These results suggest that CHP is effective in antioxidation activity and treatment and prevention of hyperlipidemia, atherosclerosis, diabetes, ischemic heart disease, stroke and other cardiocerebrovascular disease.

Effect of Acupuncture at ST36 on Ischemia-induced Learning and Memory Deficits in Gerbils

  • Chung, Jin-Yong;Park, Hyun-Jung;Shim, Hyun-Soo;Hahm, Dae-Hyun;Kim, Hee-Young;Lee, Hye-Jung;Kim, Kyung-Soo;Shim, In-Sop
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.25 no.2
    • /
    • pp.300-305
    • /
    • 2011
  • The present study was investigated the neuroprotective effects of acupuncture at ST36 on learning and memory deficits after transient cerebral ischemia in a gerbil model. The animals were randomly divided into three groups (n=7 in each group): the sham operation group (SHAM), ischemia-induced and ST36 acupuncture group (ISC + ST36), and the ischemia-induced and Tail-acupuncture group (ISC + TAIL). For the acupuncture stimulation, stainless steel needles, 0.3 mm in diameter, were inserted bilaterally into the ST36 locus or the tail and stimulated for 1 min/day for 14 days. Using the Morris water maze test, the animals were tested on spatial learning and memory. In addition, the effects of acupuncture on memory storage and the choline acetyltransferase (ChAT) activity, in the hippocampal CA1 area, were investigated by ChAT immunohistochemistry. Transient cerebral ischemia produced impaired performance on the MWM test (DAY 5: p<0.01 and retention test: p<0.05) and severely decreased ChAT immunoreactivity in the CA1 hippocampal area compared to the SHAM group (p<0.05). However, improved learning and memory were observed (DAY 5: p<0.05 and retention test: p<0.01) as well as a significantly reduced loss of ChAT immunoactivity in the hippocampal CA1 region (p<0.001) after acupuncture stimulation at ST36 were observed. These results show that acupuncture at ST36 ameliorated the learning and memory deficits at least in part through the cholinergic system. The findings of this study provide potential data that acupuncture is useful for the treatment of some of the behavioral impairs of transient cerebral ischemia.

Adenosine A3 Receptor Mediates ERK1/2- and JNK-Dependent TNF-α Production in Toxoplasma gondii-Infected HTR8/SVneo Human Extravillous Trophoblast Cells

  • Ye, Wei;Sun, Jinhui;Li, Chunchao;Fan, Xuanyan;Gong, Fan;Huang, Xinqia;Deng, Mingzhu;Chu, Jia-Qi
    • Parasites, Hosts and Diseases
    • /
    • v.58 no.4
    • /
    • pp.393-402
    • /
    • 2020
  • Toxoplasma gondii is an intracellular parasite that causes severe disease when the infection occurs during pregnancy. Adenosine is a purine nucleoside involved in numerous physiological processes; however, the role of adenosine receptors in T. gondii-induced trophoblast cell function has not been investigated until now. The goal of the present study was to evaluate the intracellular signaling pathways regulated by adenosine receptors using a HTR-8/SVneo trophoblast cell model of T. gondii infection. HTR8/SVneo human extravillous trophoblast cells were infected with or without T. gondii and then evaluated for cell morphology, intracellular proliferation of the parasite, adenosine receptor expression, TNF-α production and mitogen-activated protein (MAP) kinase signaling pathways triggered by adenosine A3 receptor (A3AR). HTR8/SVneo cells infected with T. gondii exhibited an altered cytoskeletal changes, an increased infection rate and reduced viability in an infection time-dependent manner. T. gondii significantly promoted increased TNF-α production, A3AR protein levels and p38, ERK1/2 and JNK phosphorylation compared to those observed in uninfected control cells. Moreover, the inhibition of A3AR by A3AR siRNA transfection apparently suppressed the T. gondii infection-mediated upregulation of TNF-α, A3AR production and MAPK activation. In addition, T. gondii-promoted TNF-α secretion was dramatically attenuated by pretreatment with PD098059 or SP600125. These results indicate that A3AR-mediated activation of ERK1/2 and JNK positively regulates TNF-α secretion in T. gondii-infected HTR8/SVneo cells.