• Title/Summary/Keyword: Physiological measurement

Search Result 489, Processing Time 0.039 seconds

A MEMS/NEMS sensor for human skin temperature measurement

  • Leng, Hongjie;Lin, Yingzi
    • Smart Structures and Systems
    • /
    • v.8 no.1
    • /
    • pp.53-67
    • /
    • 2011
  • Human state in human-machine systems highly affects the overall system performance, and should be detected and monitored. Physiological cues are essential indicators of human state and useful for the purpose of monitoring. The study presented in this paper was focused on developing a bio-inspired sensing system, i.e., Nano-Skin, to non-intrusively measure physiological cues on human-machine contact surfaces to detect human state. The paper is presented in three parts. The first part is to analyze the relationship between human state and physiological cues, and to introduce the conceptual design of Nano-Skin. Generally, heart rate, skin conductance, skin temperature, operating force, blood alcohol concentration, sweat rate, and electromyography are closely related with human state. They can be measured through human-machine contact surfaces using Nano-Skin. The second part is to discuss the technologies for skin temperature measurement. The third part is to introduce the design and manufacture of the Nano-Skin for skin temperature measurement. Experiments were performed to verify the performance of the Nano-Skin in temperature measurement. Overall, the study concludes that Nano-Skin is a promising product for measuring physiological cues on human-machine contact surfaces to detect human state.

The Impact of Landscape Type on Urban Office Workers' Stress and Cognitive Performance - Comparison between Natural and Urban Landscape - (경관유형이 도시사무직 근로자의 스트레스와 인지수행에 미치는 영향 -자연경관과 도시경관과의 비교를 중심으로-)

  • Yi Young-Kyoung;Yi Pyong-In
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.33 no.6 s.113
    • /
    • pp.1-11
    • /
    • 2006
  • The purpose of this study was to investigate the influence of natural landscapes in the context of work environments. The study examined the impact of natural landscapes on urban office workers' stress reduction and cognitive performance, using physiological, psychological, and cognitive measures. One-hundred-twenty urban office workers participated in the experiments. The physiological measures used were GSR (galvanic skin response) and IBI (interbeat interval), and the psychological measure was ZIPERS (Zucherman Inventory of Personal Reactions). Cognitive performance was measured using a mental arithmetic test that had been developed by a pretest. The results from the physiological, psychological, and cognitive measures converged to indicate that the natural landscape had more beneficial effects in relieving both psychological and physiological stress and in enhancing cognitive performance of the of office workers than the city landscape. The results suggest wide applications in the fields of workers' well-being and landscape research. First, the results can provide reliable information for promoting natural landscaping in work places in order to relieve worker stress and enhance cognitive performance. Second, the results provide an example for future empirical landscape research using multiple measurements, such as psychological, physiological, and cognitive tests. Third, they can foster experimental research to investigate the relationship between stress reduction and natural landscapes.

A Study on HMI Assessment of Joystick Driving System Using the Physiological Signal Measurement Method (생리신호 측정기법을 이용한 Joystick 운전방식의 HMI 평가연구)

  • Kim, Bae-Young;Koo, Tae-Yun;Bae, Chul-Ho;Park, Jung-Hoon;Suh, Myung-Won
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.3
    • /
    • pp.1-7
    • /
    • 2010
  • Recently, the vehicle driving device has been designed for driver's convenience. Especially, the automobile industry develops the vehicle using the joystick instead of steering wheel from the concept car. The biggest strength of using the joystick is that the driver feels less workload and fatigue than when the driver uses steering wheel. However, this kind of study still needs more research and experiments for more accurate result. Therefore, this research evaluated workload according to the driving device by the survey and the measurement of physiological signal. The reason not only using the survey also using the measurement of physiological signal is to support the result of the survey which is not enough to bring the accurate result. There were tow different kinds of methods to carry out this research; SWAT (Subjective Workload Assessment Technique) for the survey and the biopac equipment for the measurement of physiological signal. Furthermore, previously established driving simulator, GPS (Global Positioning System), and Seoul-Cheonan virtual expressway DB were used for the experiment. As the result of the experiment with 13 subjects, it was certain that using joystick device brings less workload and fatigue to the drivers than using steering wheel following both methods-the survey and the measurement of physiological signal. Also, it confirmed the significant result from the SPSS (Statistical Package for the Social Sciences) statistics analysis program.

Stress Multi-Index Analysis Expression Technique (스트레스 멀티지수 분석 표현기법)

  • Han, Seung-Heon;Kim, Young-Kil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.10
    • /
    • pp.1717-1722
    • /
    • 2008
  • A number of tools and equipment can measure the degree of stress. Stress measurement includes both psychological and physiological measurements. Considering only one of these elicits subjective or objective deficiency. Overcoming this problem requires a new stress index that combines these two measurements. Following people's personal traits, the measurement results also appear in diverse ways, but we can consider and study the general case obtained on the basis of the measurement tool. By using the index obtained by the psychological and physiological measurement tools, we obtain an integrated stress index. Therefore, we choose to use four stress measurement tools. The index of the result of each measurement tools is referred to as the multi-index. These indices are plotted on coordinates to analyze and diagnose the balance and tendency of the stress.

How to Measure Alert Fatigue by Using Physiological Signals?

  • Chae, Jeonghyeun;Kang, Youngcheol
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.760-767
    • /
    • 2022
  • This paper introduces alert fatigue and presents methods to measure alert fatigue by using physiological signals. Alert fatigue is a phenomenon that which an individual is constantly exposed to frequent alarms and becomes desensitized to them. Blind spots are one leading cause of struck-by accidents, which is one most common causes of fatal accidents on construction sites. To reduce such accidents, construction equipment is equipped with an alarm system. However, the frequent alarm is inevitable due to the dynamic nature of construction sites and the situation can lead to alert fatigue. This paper introduces alert fatigue and proposes methods to use physiological signals such as electroencephalography, electrodermal activity, and event-related potential for the measurement of alert fatigue. Specifically, this paper presents how raw data from the physiological sensors measuring such signals can be processed to measure alert fatigue. By comparing the processed physiological data to behavioral data, validity of the measurement is tested. Using preliminary experimental results, this paper validates that physiological signals can be useful to measure alert fatigue. The findings of this study can contribute to investigating alert fatigue, which will lead to lowering the struck-by accidents caused by blind spots.

  • PDF

청각 감성의 생리적 신호변화에 대한 연구

  • 황민철;김지은;김철중
    • Proceedings of the ESK Conference
    • /
    • 1996.04a
    • /
    • pp.259-263
    • /
    • 1996
  • Psychological action is physiological response of outernal stimulus. Physiological response is accompanied b physiological signals which are EEG, EMG, GSR, ECG, BP, and tec. Physiological signals are recently studied for determination of human phychological state. Psychological activity causes electric potential of brain. Physiological signal is considered as measurement of human psychological state. Aditory sensibility which is one of the sense of human may determine differences between positive and negative feeling. EEG and GSR variation with auditory quality of stimulus can be define human negative and positive mental state. This study is to characterize parameters which can determine negative and positive psycholigical state of human.

  • PDF

Manufacture of Custom IC and System for Multi-channel Biotelemeter (다채널 바이오텔레미터 개발을 위한 전용 IC 및 시스템 제작)

  • 서희돈;박종대
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.8
    • /
    • pp.172-180
    • /
    • 1994
  • Implantable biotelemetry systems are indispensable tools not only in animal research but also in clinical medicine as such systems enable the acquisition of otherwise unavailable physiological data. We present the manufacture of CMOS IC and its system for implantable multichannel biotelemeter system. The internal circuits of this system are designed not only to achieve as multiple functions and low power dissipation as possible but also to enable continuous measurement of physiological data. Its main functions are to enable continuous measurement of physiological data and to accomplish on-off power swiching of an implantable battery by receiving appropriate commanc signals from an external circuit. The implantable circuits of this system are designed and fabricated on a single silicon chip using $1.5\mu$m n-well CMOS process technology. The total power dissipation of implantable circuits for a continuous operation was 6.7mW and for a stand-by operation was 15.2$\mu$ W. This system used together with approriate sensors is expected to contribute to clinical medicine telemetry system of measuring and wireless transmitting such significant physiological parameters as pressure pH and temperature.

  • PDF

An Analysis on Technology and Patent of Physiological Signal Measurement Industry in Major Countries (주요국 생체신호계측기기산업의 기술, 특허 및 정책 분석)

  • 이충희;김상우;이병민
    • Journal of Korea Technology Innovation Society
    • /
    • v.6 no.4
    • /
    • pp.411-428
    • /
    • 2003
  • We have examined and analyzed the status of policy, R&D investments, patents and market share of physiological signal measurement technologies for major countries including Korea, the United States, European Union and Japan. Korea is generally inferior to the others in terms of priority of industrial policy, R&D investment, number of patents, technological level and world market share. However, Korea could recover competitiveness, with intensive government supports for this technology.

  • PDF

Interval estimate of physiological fluctuation of peak latency of ERP waveform based on a limited number of single sweep records

  • Nishida, Shigeto;Nakamura, Masatoshi;Suwazono, Shugo;Honda, Manabu;Nagamine, Takashi;Shibasaki, Hiroshi
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.1.1-5
    • /
    • 1994
  • In the single sweep record of event-related potential (ERP), the peak latency of P300, which is one of the most prominent positive peaks in the ERP record, might fluctuate according to the recording conditions. The fluctuation of the peak latency (measurement fluctuation) is the summation of the fluctuation caused by physiological factor (physiological fluctuation) and one by noise of background EEG (noise fluctuation). We propsed a method for estimating the interval of the physiological fluctuation based on a limited number of single sweep records. The noise fluctuation was estimated by using the relationship between the signal-to-noise (SN) ratio and the noise fluctuation based on the P300 model and the background EEG model. The interval estimate of the physiological fluctuation were obtained by subtracting the interval estimate of the noise fluctuation from that of the measurement fluctuation. The proposed method was tested by using simulation data of ERP and applied to actual ERP and data of normal subjects, and gave satisfactory results.

  • PDF