• Title/Summary/Keyword: Physiological cycle

Search Result 294, Processing Time 0.02 seconds

Two key genes closely implicated with the neuropathological characteristics in Down syndrome: DYRK1A and RCAN1

  • Park, Joong-Kyu;Oh, Yo-Han;Chung, Kwang-Chul
    • BMB Reports
    • /
    • v.42 no.1
    • /
    • pp.6-15
    • /
    • 2009
  • The most common genetic disorder Down syndrome (DS) displays various developmental defects including mental retardation, learning and memory deficit, the early onset of Alzheimer's disease (AD), congenital heart disease, and craniofacial abnormalities. Those characteristics result from the extra-genes located in the specific region called 'Down syndrome critical region (DSCR)' in human chromosome 21. In this review, we summarized the recent findings of the DYRK1A and RCAN1 genes, which are located on DSCR and thought to be closely associated with the typical features of DS patients, and their implication to the pathogenesis of neural defects in DS. DYRK1A phosphorylates several transcriptional factors, such as CREB and NFAT, endocytic complex proteins, and AD-linked gene products. Meanwhile, RCAN1 is an endogenous inhibitor of calcineurin A, and its unbalanced activity is thought to cause major neuronal and/or non-neuronal malfunction in DS and AD. Interestingly, they both contribute to the learning and memory deficit, altered synaptic plasticity, impaired cell cycle regulation, and AD-like neuropathology in DS. By understanding their biochemical, functional and physiological roles, we hope to get important molecular basis of DS pathology, which would consequently lead to the basis to develop the possible therapeutic tools for the neural defects in DS.

Heterologous Microarray Hybridization Used for Differential Gene Expression Profiling in Benzo[a]pyrene-exposed Marine Medaka

  • Woo, Seon-Ock;Won, Hyo-Kyoung;Jeon, Hye-Young;Kim, Bo-Ra;Lee, Taek-Kyun;Park, Hong-Seog;Yum, Seung-Shic
    • Molecular & Cellular Toxicology
    • /
    • v.5 no.4
    • /
    • pp.283-290
    • /
    • 2009
  • Differential gene expression profiling was performed in the hepatic tissue of marine medaka fish (Oryzias javanicus) after exposure to benzo[a]pyrene (BaP), a polycyclic aromatic hydrocarbon (PAH), by heterologous hybridization using a medaka cDNA microarray. Thirty-eight differentially expressed candidate genes, of which 23 were induced and 15 repressed (P<0.01), were identified and found to be associated with cell cycle, development, endocrine/reproduction, immune, metabolism, nucleic acid/protein binding, signal transduction, or non-categorized. The presumptive physiological changes induced by BaP exposure were identified after considering the biological function of each gene candidate. The results obtained in this study will allow future studies to assess the molecular mechanisms of BaP toxicity and the development of a systems biology approach to the stress biology of organic chemicals.

Current Status of Bacterial Grain Rot of Rice in Korea (세균성 벼알마름병의 연구동향)

  • 송완엽;김형무
    • Plant Disease and Agriculture
    • /
    • v.5 no.1
    • /
    • pp.1-7
    • /
    • 1999
  • The grain rot of caused by Bukholderia glumae was fist reported in japan in 1955 and then reported in other countries as well as in Korea in 1986. The pathogen causes both seedling and grain rot of rice but it cannot attack any other parts of adult rice plant. Bacterial colonies grow slowly, and are circular and greyish white. The causal bacterium is Gram-negative and rod shape with 1-3 polar flagella, and produce a diffusible yellow-greenish nonfluorescent pigment on King's medium B. Biochemical characteristics such as negative in arginine dehydrolase, oxidase reaction and nitrate reduction and positive in lecithinase, and the utilization of L-arginine and inositol are useful in differentiation of this from other nonfluorescent bacteria pathogenic to rice. This pathogenic bacterium had belonged to the genus of Pseudomonas but recently was transferred to the new genus Burkholderia on the basis of physiological characteristics and DNA-DNA hybridization data. However, other characteristics such as colony heterogenicity or colonial variation after subcultures, phytotoxin, secreting antibiotics, and relationship between yellow greenish pigment production and pathogenicity need to be clarified more. To develop an effective control strategy for this disease, understanding of detailed life cycle of the disease and critical environmental factors affecting disease development is prerequisite. Although 5,435 ha of rice paddy in Korea was infested during 1998, there is no exact estimation of yield losses and distribution of the pathogen. The review will focus on recent progress on the understanding of the bacteriological and ecological characteristics of the causal bacterium and control means of the disease.

  • PDF

Proteomic Changes in the Sound Vibration-Treated Arabidopsis thaliana Facilitates Defense Response during Botrytis cinerea Infection

  • Ghosh, Ritesh;Choi, Bosung;Kwon, Young Sang;Bashir, Tufail;Bae, Dong-Won;Bae, Hanhong
    • The Plant Pathology Journal
    • /
    • v.35 no.6
    • /
    • pp.609-622
    • /
    • 2019
  • Sound vibration (SV) treatment can trigger various molecular and physiological changes in plants. Previously, we showed that pre-exposure of Arabidopsis plants to SV boosts its defense response against Botrytis cinerea fungus. The present study was aimed to investigate the changes in the proteome states in the SV-treated Arabidopsis during disease progression. Proteomics analysis identified several upregulated proteins in the SV-infected plants (i.e., SV-treated plants carrying Botrytis infection). These upregulated proteins are involved in a plethora of biological functions, e.g., primary metabolism (i.e., glycolysis, tricarboxylic acid cycle, ATP synthesis, cysteine metabolism, and photosynthesis), redox homeostasis, and defense response. Additionally, our enzyme assays confirmed the enhanced activity of antioxidant enzymes in the SV-infected plants compared to control plants. Broadly, our results suggest that SV pre-treatment evokes a more efficient defense response in the SV-infected plants by modulating the primary metabolism and reactive oxygen species scavenging activity.

Protective Effect of Palmul-tang on Glutamate Induced Cytotoxicity in C6 Glial cells (Glutamate로 유도된 C6 glial 세포의 독성에 대한 팔물탕(八物湯)의 보호 효과)

  • Shin, Yong-Jeen;Shin, Sun-Ho
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.26 no.4
    • /
    • pp.475-482
    • /
    • 2012
  • This study was designed to elucidate the mechanism of the cytoprotective effect of the Palmul-tang (PMT) on glutamate induced cytotoxicity in rat C6 glial cells. We determined the increase of cell viability by PMT on glutamate-induced death of C6 glial cell. On some experiments, glutamate induced cell death to be an apoptotic phenomena characterized by G1 arrest in cell cycle, chromatin condensation, DNA fragmentation in C6 glial cells. However, pre-treatment of PMT inhibited characteristic apoptotic phenomena. One of the main mediator of glutamate-induced cytotoxicity was known to generation of reactive oxigen species. In this study, PMT attenuated generation of reactive oxigen species by glutamate through down-regulation of NOX1 expression in C6 glial cells. Furthermore, PMT regulated Bcl2 families and caspase proteins, which contribute the cell survival or death. This study suggests that PMT may be candidate for both of therapeutic and protective prescription.

Induction of Apoptosis by Yukwool-tang in Human Cervical Carcinoma HeLa Cells (육울탕(六鬱湯)에 의한 인체자궁경부암세포의 증식억제에 관한 연구)

  • Choi, Yung-Hyun;Choi, Byung-Tae;Lee, Yong-Tae
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.21 no.6
    • /
    • pp.1513-1519
    • /
    • 2007
  • Yukwool-tang (YWT) is a traditional Chinese medicine, which has been used for patients suffering from a uterine disease in Oriental medicine. In the present study, it was examined the biochemical mechanisms of apoptosis by YWT in human cervical carcinoma HeLa cells. It was found that YWT could inhibit the cell growth of HeLa cells in a dose-dependent manner, which was associated with apoptotic cell death such as formation of apoptotic bodies and DNA fragmentation. Flow cytometry analysis confirmed that YWT treatment increased populations of apoptotic-sub-G1 phase of the cell cycle. We observed the p53-independent induction of p21 proteins, down-regulation of anti apoptotic Bcl-2 expression and proteolytic activation of caspase-3 in YWT-treated HeLa cells. YWT treatment also concomitant degradation and/or inhibition of poly (ADP-ribose) polymerase (PARP), phospholipase C-1 ($PLC{\gamma}1$), ${\beta}-catenin$ and DNA fragmentation factor 45/inhibitor of caspase-activated DNase (DFF45/ICAD). Taken together, these findings partially provide novel insights into the possible molecular mechanism of the anti-cancer activity of YWT.

Current Understanding of the Mechanism of qE, a Major Component of Non-photochemical Quenching in Green Plants

  • Zulfugarov Ismayil S.;Mishra Sujata R.;Han, Ok-Kyung;Safarova Rena B.;Nath Krishna;Lee, Choon-Hwan
    • Journal of Photoscience
    • /
    • v.12 no.3
    • /
    • pp.175-183
    • /
    • 2005
  • Plants dissipate excess excitation energy from their photosynthetic apparatus by a process called non-photochemical quenching (NPQ). The major part of NPQ is energy dependent quenching (qE) which is dependent on the thylakoid pH and regulated by xanthophyll cycle carotenoids associated with photosystem (PS) II of higher plants. The acidification of the lumen leads to protonation and thus conformational change of light harvesting complex (LHC) proteins as well as PsbS protein of PSII, which results in the induction of qE. Although physiological importance of qE has been well established, the mechanistic understanding is rather insufficient. However, recent finding of crystal structure of LHCII trimer and identification of qE mutants in higher plants and algae enrich and sharpen our understanding of this process. This review summarizes our current knowledge on the qE mechanism. The nature of quenching sites and components involved in this process, and their contribution and interaction for the generation of qE appeared in the proposed models for the qE mechanism are discussed.

  • PDF

Relationship between Intersequence Pauses, Laying Persistency and Concentration of Prolactin during the Productive Period in White Leghorn Hens

  • Reddy, I.J.;David, C.G.;Singh, Khub
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.5
    • /
    • pp.686-691
    • /
    • 2005
  • Prolactin is considered to influence the taking of pauses in between ovulatory sequences in White Leghorn hens. Therefore modulating concentrations of prolactin using bromocriptine - a dopamine agonist during early life (17 to 36 weeks of age) could overcome the inhibitory effects of high concentration of prolactin on ovarian activity. The effect of modulation of prolactin concentration on egg production, sequence length and inter sequence pauses were studied by analyzing the oviposition records from 19 to 72 weeks were studied and compared with untreated controls. Bromocriptine administered subcutaneously (100 $\mu$g kg$^{-1}$ body weight or orally through feed (640 $\mu$g day$^{-1}$ bird$^{-1}$) resulted in a steady and sustained decrease in prolactin levels (p<0.01) during and after the withdrawal of treatment up to one reproductive cycle (72 weeks of age). The treated birds had comparatively longer sequences (p<0.01) and fewer pauses (p<0.01). Egg production increased (p<0.01) by fourteen per cent through subcutaneous administration and eleven per cent through oral feeding, over the control birds. It is concluded that the physiological pauses that occur during ovulatory sequences can be disrupted effectively using bromocriptine. Prolactin levels are modulated which may interfere with the follicular recruitment and subsequent oviposition thereby improve egg laying potential of the bird.

Overexpression of TTRAP inhibits cell growth and induces apoptosis in osteosarcoma cells

  • Zhou, Caihong;Shen, Qi;Xue, Jinglun;Ji, Chaoneng;Chen, Jinzhong
    • BMB Reports
    • /
    • v.46 no.2
    • /
    • pp.113-118
    • /
    • 2013
  • TTRAP is a multi-functional protein that is involved in multiple aspects of cellular functions including cell proliferation, apoptosis and the repair of DNA damage. Here, we demonstrated that the lentivirus-mediated overexpression of TTRAP significantly inhibited cell growth and induced apoptosis in osteosarcoma cells. The ectopic TTRAP suppressed the growth and colony formation capacity of two osteosarcoma cell lines, U2OS and Saos-2. Cell apoptosis was induced in U2OS cells and the cell cycle was arrested at G2/M phase in Saos-2 cells. Exogenous expression of TTRAP in serum-starved U2OS and Saos-2 cells induced an increase in caspase-3/-7 activity and a decrease in cyclin B1 expression. In comparison with wild-type TTRAP, mutations in the 5'-tyrosyl-DNA phosphodiesterase activity of TTRAP, in particular $TTRAP^{E152A}$, showed decreased inhibitory activity on cell growth. These results may aid in clarifying the physiological functions of TTRAP, especially its roles in the regulation of cell growth and tumorigenesis.

Importance of micronutrients in bone health of monogastric animals and techniques to improve the bioavailability of micronutrient supplements - A review

  • Upadhaya, Santi Devi;Kim, In Ho
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.12
    • /
    • pp.1885-1895
    • /
    • 2020
  • Vitamins and minerals categorized as micronutrients are the essential components of animal feed for maintaining health and improving immunity. Micronutrients are important bioactive molecules and cofactors of enzymes as well. Besides being cofactors for enzymes, some vitamins such as the fat-soluble vitamins, vitamin A and D have been shown to exhibit hormone-like functions. Although they are required in small amount, they play an influential role in the proper functioning of a number of enzymes which are involved in many metabolic, biochemical and physiological processes that contribute to growth, production and health. Micronutrients can potentially have a positive impact on bone health, preventing bone loss and fractures, decreasing bone resorption and increasing bone formation. Thus, micronutrients must be provided to livestock in optimal concentrations and according to requirements that change during the rapid growth and development of the animal and the production cycle. The supply of nutrients to the animal body not only depends on the amount of the nutrient in a food, but also on its bioavailability. The bioavailability of these micronutrients is affected by several factors. Therefore, several technologies such as nanoparticle, encapsulation, and chelation have been developed to improve the bioavailability of micronutrients associated with bone health. The intention of this review is to provide an updated overview of the importance of micronutrients on bone health and methods applied to improve their bioavailability.