• Title/Summary/Keyword: Physiological MRI

Search Result 60, Processing Time 0.024 seconds

Statistical methods for modelling functional neuro-connectivity (뇌기능 연결성 모델링을 위한 통계적 방법)

  • Kim, Sung-Ho;Park, Chang-Hyun
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.6
    • /
    • pp.1129-1145
    • /
    • 2016
  • Functional neuro-connectivity is one of the main issues in brain science in the sense that it is closely related to neurodynamics in the brain. In the paper, we choose fMRI as a main form of response data to brain activity due to its high resolution. We review methods for analyzing functional neuro-connectivity assuming that measurements are made on physiological responses to neuron activation. This means that we deal with a state-space and measurement model, where the state-space model is assumed to represent neurodynamics. Analysis methods and their interpretation should vary subject to what was measured. We included analysis results of real fMRI data by applying a high-dimensional autoregressive model, which indicated that different neurodynamics were required for solving different types of geometric problems.

Estimation Method for Brain Activities are Influenced by Blood Pulsation Effect (Blood Pulsation의 효과가 뇌 활성화에 미치는 영향을 알아보는 방법)

  • Lee, W.H.;Ku, J.H.;Lee, H.R.;Han, K.W.;Park, J.S.;Kim, J.J.;Yoon, K.J.;Kim, I.Y.;Kim, S.I.
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.3
    • /
    • pp.338-343
    • /
    • 2007
  • BOLD T2*-weighted MR images reflects cortical blood flow and oxygenation alterations. fMRI study relies on the detection of localized changes in BOLD signal intensity. Since fMRI measures the very small modulations in BOLD signal intensity that occur during changes in brain activity, it is also very sensitive to small signal intensity variations caused by physiologic noise during the scan. Due to the complexity of movement of various organs associated with heart beat, it is important to reduce cardiac related noise rather than other physiological noise which could be required with relatively simple method. Therefore, a number of methods have been developed for the estimation and reduction of cardiac noise in fMRI study. But, each method has limitation. In this study, we proposed a new estimation method for brain activities influenced by blood pulsation effect using regression analysis with blood pulsation signal and the correspond slice of fMRI. We could find out that the right anterior cingulate cortex and right olfactory cortex and left olfactory cortex were largely influenced by blood pulsation effect for new method. These observed areas are mostly on the structure of anterior cerebral artery in the brain. That is convinced with that our method would be valid and our new method is easier to apply in practice and reduce computational burden than the retrospective method.

The Studies on Qigong state Using EEG, fMRI, EAV and SQUID Measurments (EEG, fMRI, EAV 및 SQUID장치(裝置)를 이용(利用)한 기공현상(氣功現狀) 측정(測定))

  • Jeong, Chan-Won;Choi, Chan-Hun;Yoon, Wu-Sik;So, Cheal-Ho;Na, Chang-Su;Jang, Kyeong-Seon
    • Korean Journal of Acupuncture
    • /
    • v.21 no.2
    • /
    • pp.1-28
    • /
    • 2004
  • Objectives : Human physiological changes in the state of qigong has been measured using EEG(Electroencephalography), functional MRI(functional Magnetic Resonance Image), EAV(Electro-Acupuncture according to Voll) and SQUID(Superconducting Quantum Interference Device) measurements. Methods & Results : EEGs were measured to study the differences between Qigong masters and Qi receiver on the changes of EEG. During Qigong, an alpha waves were increased. The power spectra indicate that the peak frequency of alpha waves increased during Qigong. Qi receiver's EEG signals seemed to affected by the state of himself. Brain activation did not observed when qigong master concentrates the Qi at Laogong(P8). But a localization of fMRI signal in the sensory cortex was observed by electric acupuncture stimulation at Laogong(P8). Five phase deviation of EAV were clearly changed in the both cases of Qigong master and Qi receiver. When a Qigong master concentrates the Qi at Yintang, Laogong(P8), Qihai(CV6) meridian points during Qigong state, the change of magnetic field around acupoints Yintang, Laogong points has been measured using 40-Channel DROS-SQUID apparatus. After smoothing process of the continuously measured magnetic signal around acupoints for a few minutes, we could observe that a series of peaks, magnitude of -1.0~2.5pT appeared. But there was no significant difference in changes of magnetic signal around acupoints. Physical signals of magnetocardiogram has been measured by using 2-Channel DROS SQUID(Magnetocardiogram). Physical signals of magnetocardiogram were clealy changed at the ST segments after S-wave when qigong master concentrates the Qi.

  • PDF

Regression Models Predicting Trunk Muscles' PCSAs of Korean People (요추 부위 인체역학 모델을 위한 한국인 몸통 근육의 생리학적 단면적 추정 회귀 모델)

  • Kim, Ji-Hyun;Song, Young-Woong
    • Journal of the Ergonomics Society of Korea
    • /
    • v.27 no.2
    • /
    • pp.1-7
    • /
    • 2008
  • This study quantified 7 trunk muscles' physiological cross-sectional areas (PCSAs) and developed prediction equations for the physiological cross-sectional area as a function of anthropometic variables for Korean people. Nine females and nine males were participated in the magnetic resonance imaging (MRI) scans approximately from S1 through T8. Muscle fiber angle corrected cross-sectional areas (anatomical cross sectional areas: ACSAs) were recorded at each vertebral level and maximum value of ACSAs were determined as physiological cross sectional area (PCSA). There was a significant gender difference in PCSAs of all muscles (p<0.05). Stepwise linear regression techniques using anthropometric measures (e.g., height, weight, trunk depths and widths) as independent variables were conducted to develop prediction equations for the PCSA for each muscle. For males, six muscles' significant prediction equations (p<0.05) were developed except quadratus lumborum. For females, three prediction equations were developed for psoas, quadratus lumborum, and erector spinae muscles (p<0.05).

The Evaluation of Optimized Inversion-Recovery Fat-Suppression Techniques for T2-Weighted Abdominal MR Imaging : Preliminary report (복부의 T2강조 영상에서 지방소거기법의최적의 평가)

  • Lee, Da-Hee;Goo, Eun-Hoe
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.14 no.1
    • /
    • pp.31-35
    • /
    • 2012
  • To test the real image quality of a spectral attenuated inversion-recovery (SPAIR) fat-suppression (FS) techniquein clinical abdominal MRI by comparison to turbo spin echo inversion-recovery (TSEIR) fat-suppression (FS) technique. 3.0T MRI studies of the abdomen were performed in 30 patients with liver lesions (hemangiomas n: 15; HCC n: 15). T2W sequences were acquired using SPAIR TSEIR. Measurements included retroperitoneal and mesenteric fat signal-to-noise (SNR) to evaluate FS; liver lesion contrast-to-noise (CNR) to evaluate bulk water signal recovery effects; and bowel wall delineation to evaluate susceptibility and physiological motion effects. SPAIR-TSEIR images produce significantly improved FS and liver lesion CNR. The mean SNR of the retroperitoneal and mesenteric fat for SPAIR were 20.5, 10.2 and TSEIR were 43.2, 24.1 (P<0.05). SPAIR-TSEIR images produced higher CNR for both hemangiomas CNR 164.88 vs 126.83 (P<0.05) and metastasis CNR 75.27 vs 53.19 (P<0.05). Bowel wall visualization was significantly improved using in both SPAIR-TSEIR (P< 0.05). The real image quality of SPAIR was better than over conventional TSEIR FS on clinical abdominal MRI scans.

  • PDF

Motor Areas of the Cerebral Cortex-New Vistas

  • Tanji, Jun
    • The Korean Journal of Physiology
    • /
    • v.28 no.1
    • /
    • pp.19-25
    • /
    • 1994
  • On the basis of morphological and functional studies, it is now established that there exist multiple motor representation areas in the frontal lobe of subhuman primates. Recent development of analysis on cerebral critical organization in human subjects, utilizing novel techniques of PET and MRI, provides evidence of corresponding motor areas. Each area has its unique sources of inputs from the thalamus and from other parts of the cerebral cortex. To understand functional roles of these multiple motor areas, it is necessary to study neural activity while subjects are performing a variety of motor tasks. In view of high accuracy in spatial and temporal resolution, the analysis of single cells in relation to specific aspects of motor behavior remains to be a powerful research technique. It is with this technique that a number of novel concepts on functional roles of multiple motor areas have been proposed.

  • PDF

Intracranial ipoma : CT and MRI Findings

  • Lee, Jong-Deok;Choi, Chang-Min
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.19 no.3
    • /
    • pp.830-833
    • /
    • 2005
  • Intracranial lipomas are rare lesions, which are believed to be congenital malformations. They are usually asymptomatic incidental findings and localized in the midline. However, they may occasionally produce neurological symptoms such as seizure, headache, mental changes, paresis. Currently, diagnosis of intracranial lipomas is made on based of imaging modalities, particularly Magnetic resonance imaging(MRI). Because Lipomas are strongly adherent to the surroundings and typically enclose both vessels and nerves, Surgical approach is rarely indicated.

Analysis and Usefulness of Microelectrode Recording during Deep Brain Stimulation Surgery in Movement Disorders (이상운동질환에 대한 뇌심부자극 수술 중에 미세전극 기록의 분석과 유용성)

  • Baek, Jae-Seung;Park, Sang-Ku;Kim, Dong-Jun;Park, Chan-Woo;Lim, Sung-Hyuk;Hyun, Soon-Chul
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.51 no.4
    • /
    • pp.468-474
    • /
    • 2019
  • Deep brain stimulation (DBS) is an effective surgical procedure for treating drug refractory movement disorders, and DBS involves delivering high frequency electrical stimulation to deep brain nuclei. Microelectrode recording (MER) is a complementary test that can precisely identify the location of deep brain nuclei, along with MRI correlation, during DBS surgery to improve the surgical outcome and minimize side effects. The purpose of this paper is to analyze the neuro-physiological waveforms and identify the usefulness of MER by analyzing the MER performed during DBS surgery for treating movement disorders. We retrospectively reviewed 28 patients who underwent MER during DBS surgery for movement disorders from January to December 2018. Of the 28 patients, 38 MERs for the subthalamic nucleus (STN), 10 MERs for the globuspallidusinternus (Gpi), and 4 MERs for the ventral intermediate thalamic nucleus (VIM) were performed. In all the cases, the target sites were found and micro-stimulations were used to check for side effects and to readjust the target sites. The clinical symptoms of all 28 patients improved after surgery. In conclusion, MER is a useful test that employs neuro-physiological waveforms to accurately identify the deep brain nuclei, along with MRI correlation, to improve the DBS surgical outcomes for movement disorders and to minimize side effects.

Tumor Habitat Analysis Using Longitudinal Physiological MRI to Predict Tumor Recurrence After Stereotactic Radiosurgery for Brain Metastasis

  • Da Hyun Lee;Ji Eun Park;NakYoung Kim;Seo Young Park;Young-Hoon Kim;Young Hyun Cho;Jeong Hoon Kim;Ho Sung Kim
    • Korean Journal of Radiology
    • /
    • v.24 no.3
    • /
    • pp.235-246
    • /
    • 2023
  • Objective: It is difficult to predict the treatment response of tissue after stereotactic radiosurgery (SRS) because radiation necrosis (RN) and tumor recurrence can coexist. Our study aimed to predict tumor recurrence, including the recurrence site, after SRS of brain metastasis by performing a longitudinal tumor habitat analysis. Materials and Methods: Two consecutive multiparametric MRI examinations were performed for 83 adults (mean age, 59.0 years; range, 27-82 years; 44 male and 39 female) with 103 SRS-treated brain metastases. Tumor habitats based on contrast-enhanced T1- and T2-weighted images (structural habitats) and those based on the apparent diffusion coefficient (ADC) and cerebral blood volume (CBV) images (physiological habitats) were defined using k-means voxel-wise clustering. The reference standard was based on the pathology or Response Assessment in Neuro-Oncologycriteria for brain metastases (RANO-BM). The association between parameters of single-time or longitudinal tumor habitat and the time to recurrence and the site of recurrence were evaluated using the Cox proportional hazards regression analysis and Dice similarity coefficient, respectively. Results: The mean interval between the two MRI examinations was 99 days. The longitudinal analysis showed that an increase in the hypovascular cellular habitat (low ADC and low CBV) was associated with the risk of recurrence (hazard ratio [HR], 2.68; 95% confidence interval [CI], 1.46-4.91; P = 0.001). During the single-time analysis, a solid low-enhancing habitat (low T2 and low contrast-enhanced T1 signal) was associated with the risk of recurrence (HR, 1.54; 95% CI, 1.01-2.35; P = 0.045). A hypovascular cellular habitat was indicative of the future recurrence site (Dice similarity coefficient = 0.423). Conclusion: After SRS of brain metastases, an increased hypovascular cellular habitat observed using a longitudinal MRI analysis was associated with the risk of recurrence (i.e., treatment resistance) and was indicative of recurrence site. A tumor habitat analysis may help guide future treatments for patients with brain metastases.

Usefulness of Functional MRI for the study of concentration sheet (Functional MRI를 이용한 학습집중력 향상 시트 개발)

  • Kim, Chang-Gyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.10
    • /
    • pp.2985-2989
    • /
    • 2009
  • An experiment was conducted to examine the effects of ceramic sheet on concentration of students studies. To demonstrate the improvement in the concentration of study, we obtained functional magnetic resonance imaging (fMRI), which has superior time resolution and measures brain noninvasively by using intrinsic contrast agent. As a result of Brainwave measurement, we could verify the blood flow's activate in the nearby frontal lobe related to memory process and noticeable ratio change in absolute alpha wave and beta wave after the analysis of Brainwave measurement. fMRI ascertains the physiological function of the brain and is being used to prevent the trouble medically that can be caused before and after the operation. For the visibility of cranial nerve network, many researches will be carried out to develope the product which is related to brain like concentration of study.