• Title/Summary/Keyword: Physiological Function

Search Result 1,214, Processing Time 0.044 seconds

The Study of Brain Function Changes After Contralateral and Ipsilateral Application Of Electroacupuncture (동측 및 대측 전침자극 전후의 뇌기능 변화에 관한 연구)

  • Woo, Young-min;Shin, Byung-cheul;Nam, Young
    • Journal of Acupuncture Research
    • /
    • v.20 no.1
    • /
    • pp.22-34
    • /
    • 2003
  • Objective : To ascertain whether the concept of the treatment side is associated with changes in the blind spot mapping that represents the brain function. Methods : Among the outpatients who visited to Department of Acupuncture & Moxibustion, National Medical Center from March 2002 to October 2002, we selected 40 clinical trial volunteers that showed right side physiological blind spot more enlarged than left, and underwent the examinations of Department of Opthalmology, National Medical Center for ruling out the pathological conditions. Physiological blind spot maps were used as an integer of brain activity before and after electroacupuncture application on the unilateral ST36 meridian point by dividing 40 subjects into two comparative groups for double-blind controlled study. Results: The significant changes in the blind spots were observed. Electroacupuncture application on the ipsilateral or contralateral ST36 of an enlargement cortical map were associated with the concept of determining the treatment side. In the case of electroacupuncture application on the ipsilateral side of an enlarged blind spot, there were decrease of $4.11{\pm}8.56cm$(17.3%) in blind spot perimetry length(p < 0.05). In the case of contralateral side, there were increase of $3.19{\pm}5.40cm$(13.7%) in blind spot perimetry length(p<0.05). The Differences were statistically significant(p<0.05). Conclusions: We found that eletroacupuncture application was associated with an increase or decrease in the brain function in the view of blind spot changes depending on the treatment side. These results suggest that the traditional acupuncture therapeutic strategy with determining the treatment side has clinical significance in the view of the brain function.

  • PDF

Study on CsRCI2D and CsRCI2H for improvement of abiotic stress tolerance in Camelina sativa L.

  • Lim, Hyun-Gyu;Kim, Hyun-Sung;Kim, Jung-Eun;Ahn, Sung-Ju
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.196-196
    • /
    • 2017
  • Oilseed crop Camelina (Camelina sativa L.) is a suitable for biodiesel production that has high adaptability under low-nutrient condition like marginal land and requires low-input cost for cultivation. Enhanced abiotic stress tolerance of Camelina is very important for oil production under the wide range of different climate. CsRCI2s (Rare Cold Inducible 2) are related proteins in various abiotic stresses that predicted to localized at plasma membrane (PM) and endoplasmic reticulum (ER). These proteins are consist of eight-family that can be divided into tail (CsRCI2D/E/F/G) and no-tail (CsRCI2A/B/E/H) type of C-terminal. However, it is still less understood the function of C-terminal tail. In this study, CsRCI2D/H genes were cloned through gateway cloning system that used pCB302-3 as destination vector. And we used agrobacterium-mediated transformation system for generation of overexpression (OX) transformants. Overexpression of target gene was confirmed using RT-PCR and segregation ratio on selection media. We analyzed physiological response in media and soil under abiotic stresses using CsRCI2D and CsRCI2H overexpression plant. To compare abiotic stresses tolerance, wild type and CsRCI2D/H OX line seeds were sown on agar plate treated with various NaCl and mannitol concentration for 7 days. In the test of growth rate under abiotic stress on media, CsRCI2H OX line showed similar to NaCl and mannitol stress. In the other hand, CsRCI2D OX line showed to be improved stress tolerance that especially increased in 200mM NaCl but was similar on mannitol media. In greenhouse, WT and CsRCI2D/H OX lines for physiological analysis and productivity under abiotic stresses were treated 100, 150, 200mM NaCl. Then it was measured various parameters such as leaf width and length, plant height, total seed weight, flower number, seed number. CsRCI2H OX line in greenhouse did not show any changes in physiological parameters but CsRCI2D OX line was improved both physiological response and productivity under NaCl stress. Among physiological parameters of CsRCI2D OX line under NaCl stress, leaf length and width were observed shorter than WT but it were slightly longer than WT in 200mM NaCl stress. Furthermore, total seed weight of CsRCI2D OX line under stress displayed to decrease than WT in normal condition, but it was gradually raised with increasing NaCl stress then more than WT relatively. These results suggested CsRCI2D might be contribute to improve abiotic stress tolerance. However, function of CsRCI2H is need to more detail study. In conclusion, overexpression of CsRCI2s family can generate various environmental stress tolerance plant and may improve crop productivity for bio-energy production.

  • PDF

Physiological signal Modeling for personalized analysis (개인화된 신호 해석을 위한 맥락 기반 생체 신호의 모델링 기법)

  • Choi, Ah-Young;Woo, Woon-Tack
    • 한국HCI학회:학술대회논문집
    • /
    • 2009.02a
    • /
    • pp.173-177
    • /
    • 2009
  • With the advent of light-weight daily physiological signal monitoring sensors, intelligent inference and analysis method for physiological signal monitoring application, commercialized products and services are released. However, practical constraints still remain for daily physiological signal monitoring. Most devices provide rough health check function and analyze with randomly sampled measurements. In this work, we propose the probabilistic modeling of physiological signal analysis. This model represent the relationship between previous user measurement (history), other group`s type, model and current observation. From the experiment, we found that the personalized analysis with long term regular data shows reliable result and reduces the analyzing errors. In addition, participants agree that the personalized analysis shows reliable and adaptive information than other standard analysis method.

  • PDF

Proline Metabolism in Neurological and Psychiatric Disorders

  • Yao, Yuxiao;Han, Weiping
    • Molecules and Cells
    • /
    • v.45 no.11
    • /
    • pp.781-788
    • /
    • 2022
  • Proline plays a multifaceted role in protein synthesis, redox balance, cell fate regulation, brain development, and other cellular and physiological processes. Here, we focus our review on proline metabolism in neurons, highlighting the role of dysregulated proline metabolism in neuronal dysfunction and consequently neurological and psychiatric disorders. We will discuss the association between genetic and protein function of enzymes in the proline pathway and the development of neurological and psychiatric disorders. We will conclude with a potential mechanism of proline metabolism in neuronal function and mental health.

Preparation of Insoluble Dietary Fiber from Forest Waste and Its Physiological Function in Rat Fed High Cholesterol Diets

  • Chai, Young-Mi;Lim, Bu-Kug;Lee, Jong-Yoon;Rhee, Soon-Jae
    • Preventive Nutrition and Food Science
    • /
    • v.7 no.1
    • /
    • pp.78-87
    • /
    • 2002
  • This study investigated the production of insoluble dietary fiber using forest waste and the dietary effect of manufactured insoluble fiber on physiological function in rat fed high cholesterol duets. Insoluble dietary fiber was prepared from the wood chips of oak (Quercus mongolica). The best condition for steam-explosion treatment for the preparation of insonuble dietary fiber was 25 kg/cm$^3$pressure for 6 minutes. In the chemical analysis of insoluble dietary fiber pretreated by 1% sodium hydroxide solution with steam-exploded wood, $\alpha$-cellulose content was 61.7% in the insoluble dietary fiber which contained 7.6% residual lignin. In order to compare insoluble dietary fiber with commercial $\alpha$-cellulose of physiological function, Sprague-Dawley male rats weighing 100$\pm$10 g were randomly assigned to one normal diet and five high cholesterol diet containing 1% cholesterol. The high cholesterol diet groups were classified as fiber free diet (FF group), 5% commercial $\alpha$-cellulose diet (5C group), 10% commercial $\alpha$-cellulose (l0C group), 5% insoluble dietary fiber dict (5M group), and 10% insoluble dietary fiber (10M group). The rats were fed ad libidum for 4 weeks. Food intake, weights gain, and food efficiency ratio in high cholesterol groups were higher than those of normal group, but there were no significant differences between the experimental groups. There were not any significant differences in the weights of livers, kidneys and small intestine of insoluble dietary fiber supplemented groups, but weight of cecum in all insolube dietary fiber group were significantly higher than those of FF group. A gstrointestinal transit time was decreased by supplementation of insoluble dietary fiber. Weight and water contents of feces in the insoluble dietary fiber supplemented groups were significantly higher than those of the FF group. There were not any significant differences in the activities of the glutamic pyruvic transaminase (GPT) and glutamic oxaloacetic transaminase (GOT) between the experimental groups. In conclusion, the manufactured insoluble dietary fiber and commercial insoluble fiber have the same physiological effects. The preparation method of the insoluble dietary fiber from the oak chips suited its purpose.

Effect on Promoting Gastrointestinal Function and Inhibiting of Decreasing Body Temperature of Ginger Extracts(Zingiber Officinale) (생강(生薑) 추출물의 위장관 기능개선 및 체온저하 억제효과에 대한 실험적 연구)

  • Kim, Nam-Seok;Jeong, Il-Kook;Lee, Chang-Hyun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.24 no.6
    • /
    • pp.996-1003
    • /
    • 2010
  • This study was performed to investigate the effect of promoting gastrointestinal function and inhibiting of decreasing body temperature of ginger extract(Zingiber officinale) in rats. In order to elucidate the gastrointestinal function and inhibiting effect of body temperature of native ginger and improved ginger, water extracts of ginger were orally administrated into rats. The results are as follows: The gastrointestinal transit time was significantly decreased in native ginger(7.66hrs) and improved ginger(7.72hrs) extract administrated groups compare to control group(8.44hrs). The mean red faecal weight was increased in native ginger(30.6%) and improved ginger(31.1%) extract administrated groups compare to control group(24.9%) for 24hrs. Inhibiting effect of decreasing body temperature induced by serotonin was increased in native ginger($1.116^{\circ}C$) and improved ginger($1.416^{\circ}C$) extract administrated groups compare to positive control group($0.384^{\circ}C$) during 40 minutes. Gastrin and CGRP immunoreactive density was more strongly expressed in native ginger and improved ginger extract administrated groups compare to control group. Serotonin immunoreactive density was more weakly expressed in native ginger and improved ginger extract administrated groups compare to control group. These results suggest that ginger extracts may enhance physiological activity such as gastrointestinal motility, protection of mucosa and gastric acid secretion in gastrointestinal tracts, and inhibits decreasing body temperature