Browse > Article
http://dx.doi.org/10.14348/molcells.2022.0115

Proline Metabolism in Neurological and Psychiatric Disorders  

Yao, Yuxiao (The Fifth Affiliated Hospital of Guangzhou Medical University)
Han, Weiping (Institute of Molecular and Cell Biology, Agency for Science, Technology and Research (A*STAR))
Abstract
Proline plays a multifaceted role in protein synthesis, redox balance, cell fate regulation, brain development, and other cellular and physiological processes. Here, we focus our review on proline metabolism in neurons, highlighting the role of dysregulated proline metabolism in neuronal dysfunction and consequently neurological and psychiatric disorders. We will discuss the association between genetic and protein function of enzymes in the proline pathway and the development of neurological and psychiatric disorders. We will conclude with a potential mechanism of proline metabolism in neuronal function and mental health.
Keywords
cell metabolism; neurological disease; neuron; proline; psychiatric disease;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Martinez-Cue, C. and Rueda, N. (2020). Cellular senescence in neurodegenerative diseases. Front. Cell. Neurosci. 14, 16.   DOI
2 Mattson, M.P., Gleichmann, M., and Cheng, A. (2008). Mitochondria in neuroplasticity and neurological disorders. Neuron 60, 748-766.   DOI
3 Mayneris-Perxachs, J., Castells-Nobau, A., Arnoriaga-Rodriguez, M., Martin, M., de la Vega-Correa, L., Zapata, C., Burokas, A., Blasco, G., Coll, C., Escrichs, A., et al. (2022). Microbiota alterations in proline metabolism impact depression. Cell Metab. 34, 681-701.e10.   DOI
4 Mitsubuchi, H., Nakamura, K., Matsumoto, S., and Endo, F. (2014). Biochemical and clinical features of hereditary hyperprolinemia. Pediatr. Int. 56, 492-496.   DOI
5 GBD 2017 Disease and Injury Incidence and Prevalence Collaborators (2018). Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 392, 1789-1858.   DOI
6 Campisi, J. (2013). Aging, cellular senescence, and cancer. Annu. Rev. Physiol. 75, 685-705.   DOI
7 Bender, H.U., Almashanu, S., Steel, G., Hu, C.A., Lin, W.W., Willis, A., Pulver, A., and Valle, D. (2005). Functional consequences of PRODH missense mutations. Am. J. Hum. Genet. 76, 409-420.   DOI
8 Chan, D.C. (2020). Mitochondrial dynamics and its involvement in disease. Annu. Rev. Pathol. 15, 235-259.   DOI
9 Bellon, A. (2007). New genes associated with schizophrenia in neurite formation: a review of cell culture experiments. Mol. Psychiatry 12, 620-629.   DOI
10 Calabresi, P., Castrioto, A., Di Filippo, M., and Picconi, B. (2013). New experimental and clinical links between the hippocampus and the dopaminergic system in Parkinson's disease. Lancet Neurol. 12, 811-821.   DOI
11 Clark, J.A. and Amara, S.G. (1993). Amino acid neurotransmitter transporters: structure, function, and molecular diversity. Bioessays 15, 323-332.   DOI
12 Coyle, J.T. (2006). Glutamate and schizophrenia: beyond the dopamine hypothesis. Cell. Mol. Neurobiol. 26, 365-384.   DOI
13 D'Aniello, S., Somorjai, I., Garcia-Fernandez, J., Topo, E., and D'Aniello, A. (2011). D-Aspartic acid is a novel endogenous neurotransmitter. FASEB J. 25, 1014-1027.   DOI
14 Owen, M.J., Sawa, A., and Mortensen, P.B. (2016). Schizophrenia. Lancet 388, 86-97.   DOI
15 Nagano, T., Nakashima, A., Onishi, K., Kawai, K., Awai, Y., Kinugasa, M., Iwasaki, T., Kikkawa, U., and Kamada, S. (2017). Proline dehydrogenase promotes senescence through the generation of reactive oxygen species. J. Cell Sci. 130, 1413-1420.
16 Nakayama, T., Al-Maawali, A., El-Quessny, M., Rajab, A., Khalil, S., Stoler, J.M., Tan, W.H., Nasir, R., Schmitz-Abe, K., Hill, R.S., et al. (2015). Mutations in PYCR2, encoding pyrroline-5-carboxylate reductase 2, cause microcephaly and hypomyelination. Am. J. Hum. Genet. 96, 709-719.   DOI
17 Ota, V.K., Bellucco, F.T., Gadelha, A., Santoro, M.L., Noto, C., Christofolini, D.M., Assuncao, I.B., Yamada, K.M., Ribeiro-dos-Santos, A.K., Santos, S., et al. (2014). PRODH polymorphisms, cortical volumes and thickness in schizophrenia. PLoS One 9, e87686.   DOI
18 Palop, J.J. and Mucke, L. (2010). Amyloid-beta-induced neuronal dysfunction in Alzheimer's disease: from synapses toward neural networks. Nat. Neurosci. 13, 812-818.   DOI
19 Dhopeshwarkar, G.A. and Mead, J.F. (1970). Fatty acid uptake by the brain. 3. Incorporation of (1-14C)oleic acid into the adult rat brain. Biochim. Biophys. Acta 210, 250-256.   DOI
20 Abuawad, A., Mbadugha, C., Ghaemmaghami, A.M., and Kim, D. (2020). Metabolic characterisation of THP-1 macrophage polarisation using LC- MS-based metabolite profiling. Metabolomics 16, 33.   DOI
21 Ding, J., Kuo, M.L., Su, L., Xue, L., Luh, F., Zhang, H., Wang, J., Lin, T.G., Zhang, K., Chu, P., et al. (2017). Human mitochondrial pyrroline-5-carboxylate reductase 1 promotes invasiveness and impacts survival in breast cancers. Carcinogenesis 38, 519-531.   DOI
22 Howes, O.D. and Kapur, S. (2009). The dopamine hypothesis of schizophrenia: version III--the final common pathway. Schizophr. Bull. 35, 549-562.   DOI
23 Gogos, J.A., Santha, M., Takacs, Z., Beck, K.D., Luine, V., Lucas, L.R., Nadler, J.V., and Karayiorgou, M. (1999). The gene encoding proline dehydrogenase modulates sensorimotor gating in mice. Nat. Genet. 21, 434-439.   DOI
24 Guernsey, D.L., Jiang, H., Evans, S.C., Ferguson, M., Matsuoka, M., Nightingale, M., Rideout, A.L., Provost, S., Bedard, K., Orr, A., et al. (2009). Mutation in pyrroline-5-carboxylate reductase 1 gene in families with cutis laxa type 2. Am. J. Hum. Genet. 85, 120-129.   DOI
25 Guo, X., Tang, P., Yang, C., and Li, R. (2018). Proline dehydrogenase gene (PRODH) polymorphisms and schizophrenia susceptibility: a metaanalysis. Metab. Brain Dis. 33, 89-97.   DOI
26 Hsieh, H., Boehm, J., Sato, C., Iwatsubo, T., Tomita, T., Sisodia, S., and Malinow, R. (2006). AMPAR removal underlies Abeta-induced synaptic depression and dendritic spine loss. Neuron 52, 831-843.   DOI
27 Hu, C.A., Donald, S.P., Yu, J., Lin, W.W., Liu, Z., Steel, G., Obie, C., Valle, D., and Phang, J.M. (2007). Overexpression of proline oxidase induces proline-dependent and mitochondria-mediated apoptosis. Mol. Cell. Biochem. 295, 85-92.   DOI
28 Iwamoto, K., Bundo, M., and Kato, T. (2005). Altered expression of mitochondria-related genes in postmortem brains of patients with bipolar disorder or schizophrenia, as revealed by large-scale DNA microarray analysis. Hum. Mol. Genet. 14, 241-253.   DOI
29 Baumgartner, M.R., Hu, C.A., Almashanu, S., Steel, G., Obie, C., Aral, B., Rabier, D., Kamoun, P., Saudubray, J.M., and Valle, D. (2000). Hyperammonemia with reduced ornithine, citrulline, arginine and proline: a new inborn error caused by a mutation in the gene encoding delta(1)- pyrroline-5-carboxylate synthase. Hum. Mol. Genet. 9, 2853-2858.   DOI
30 Arrieta-Cruz, I. and Gutierrez-Juarez, R. (2016). The role of circulating amino acids in the hypothalamic regulation of liver glucose metabolism. Adv. Nutr. 7, 790S-797S.   DOI
31 Querfurth, H.W. and LaFerla, F.M. (2010). Alzheimer's disease. N. Engl. J. Med. 362, 329-344.   DOI
32 de Koning, M.B., van Duin, E.D., Boot, E., Bloemen, O.J., Bakker, J.A., Abel, K.M., and van Amelsvoort, T.A. (2015). PRODH rs450046 and proline x COMT Val(1)(5)(8) Met interaction effects on intelligence and startle in adults with 22q11 deletion syndrome. Psychopharmacology (Berl.) 232, 3111-3122.   DOI
33 Kori, M., Aydin, B., Unal, S., Arga, K.Y., and Kazan, D. (2016). Metabolic biomarkers and neurodegeneration: a pathway enrichment analysis of Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. OMICS 20, 645-661.   DOI
34 Frajerman, A., Scoriels, L., Kebir, O., and Chaumette, B. (2021). Shared biological pathways between antipsychotics and omega-3 fatty acids: a key feature for schizophrenia preventive treatment? Int. J. Mol. Sci. 22, 6881.   DOI
35 Franco, R., Rivas-Santisteban, R., Navarro, G., Pinna, A., and Reyes-Resina, I. (2021). Genes implicated in familial Parkinson's disease provide a dual picture of nigral dopaminergic neurodegeneration with mitochondria taking center stage. Int. J. Mol. Sci. 22, 4643.   DOI
36 Liang, S.T., Audira, G., Juniardi, S., Chen, J.R., Lai, Y.H., Du, Z.C., Lin, D.S., and Hsiao, C.D. (2019). Zebrafish carrying pycr1 Gene deficiency display aging and multiple behavioral abnormalities. Cells 8, 453.   DOI
37 Pandhare, J., Cooper, S.K., and Phang, J.M. (2006). Proline oxidase, a proapoptotic gene, is induced by troglitazone: evidence for both peroxisome proliferator-activated receptor gamma-dependent and -independent mechanisms. J. Biol. Chem. 281, 2044-2052.   DOI
38 Paterlini, M., Zakharenko, S.S., Lai, W.S., Qin, J., Zhang, H., Mukai, J., Westphal, K.G., Olivier, B., Sulzer, D., Pavlidis, P., et al. (2005). Transcriptional and behavioral interaction between 22q11.2 orthologs modulates schizophrenia-related phenotypes in mice. Nat. Neurosci. 8, 1586-1594.   DOI
39 Phang, J.M., Liu, W., and Hancock, C. (2013). Bridging epigenetics and metabolism: role of non-essential amino acids. Epigenetics 8, 231-236.   DOI
40 Poewe, W., Seppi, K., Tanner, C.M., Halliday, G.M., Brundin, P., Volkmann, J., Schrag, A.E., and Lang, A.E. (2017). Parkinson disease. Nat. Rev. Dis. Primers 3, 17013.   DOI
41 Rohrbough, J., Rushton, E., Palanker, L., Woodruff, E., Matthies, H.J., Acharya, U., Acharya, J.K., and Broadie, K. (2004). Ceramidase regulates synaptic vesicle exocytosis and trafficking. J. Neurosci. 24, 7789-7803.   DOI
42 Lee, K.W., Kim, S.J., Park, J.B., and Lee, K.J. (2011). Relationship between depression anxiety stress scale (DASS) and urinary hydroxyproline and proline concentrations in hospital workers. J. Prev. Med. Public Health 44, 9-13.   DOI
43 Kuo, C.L., Chou, H.Y., Chiu, Y.C., Cheng, A.N., Fan, C.C., Chang, Y.N., Chen, C.H., Jiang, S.S., Chen, N.J., and Lee, A.Y. (2020). Mitochondrial oxidative stress by Lon-PYCR1 maintains an immunosuppressive tumor microenvironment that promotes cancer progression and metastasis. Cancer Lett. 474, 138-150.   DOI
44 Kupeli, A.E., Tatli, C.I., Seker, K.G., Carpar, E., Sobarzo-Sanchez, E., and Capasso, R. (2021). Natural compounds as medical strategies in the prevention and treatment of psychiatric disorders seen in neurological diseases. Front. Pharmacol. 12, 669638.   DOI
45 Lee, H.G., Wheeler, M.A., and Quintana, F.J. (2022). Function and therapeutic value of astrocytes in neurological diseases. Nat. Rev. Drug Discov. 21, 339-358.   DOI
46 Li, Y., Bie, J., Song, C., Liu, M., and Luo, J. (2021). PYCR, a key enzyme in proline metabolism, functions in tumorigenesis. Amino Acids 53, 1841-1850.   DOI
47 Sweeney, M.D., Zhao, Z., Montagne, A., Nelson, A.R., and Zlokovic, B.V. (2019). Blood-brain barrier: from physiology to disease and back. Physiol. Rev. 99, 21-78.   DOI
48 Travagli, R.A., Browning, K.N., and Camilleri, M. (2020). Parkinson disease and the gut: new insights into pathogenesis and clinical relevance. Nat. Rev. Gastroenterol. Hepatol. 17, 673-685.   DOI
49 Uno, Y. and Coyle, J.T. (2019). Glutamate hypothesis in schizophrenia. Psychiatry Clin. Neurosci. 73, 204-215.   DOI
50 Verkhratsky, A. and Parpura, V. (2014). Neurological and psychiatric disorders as a neuroglial failure. Period. Biol. 116, 115-124.
51 Zielke, H.R., Zielke, C.L., and Baab, P.J. (2009). Direct measurement of oxidative metabolism in the living brain by microdialysis: a review. J. Neurochem. 109 Suppl 1, 24-29.   DOI
52 Savio, L.E.B., Vuaden, F.C., Piato, A.L., Bonan, C.D., and Wyse, A.T.S. (2012). Behavioral changes induced by long-term proline exposure are reversed by antipsychotics in zebrafish. Prog. Neuropsychopharmacol. Biol. Psychiatry 36, 258-263.   DOI
53 Shankar, G.M., Bloodgood, B.L., Townsend, M., Walsh, D.M., Selkoe, D.J., and Sabatini, B.L. (2007). Natural oligomers of the Alzheimer amyloid-beta protein induce reversible synapse loss by modulating an NMDA-type glutamate receptor-dependent signaling pathway. J. Neurosci. 27, 2866-2875.   DOI
54 Escande-Beillard, N., Loh, A., Saleem, S.N., Kanata, K., Hashimoto, Y., Altunoglu, U., Metoska, A., Grandjean, J., Ng, F.M., Pomp, O., et al. (2020). Loss of PYCR2 causes neurodegeneration by increasing cerebral glycine levels via SHMT2. Neuron 107, 82-94.e6.   DOI
55 Fichman, Y., Gerdes, S.Y., Kovacs, H., Szabados, L., Zilberstein, A., and Csonka, L.N. (2015). Evolution of proline biosynthesis: enzymology, bioinformatics, genetics, and transcriptional regulation. Biol. Rev. Camb. Philos. Soc. 90, 1065-1099.   DOI
56 Alia, Pardha Saradhi, P., and Mohanty, P. (1997). Involvement of proline in protecting thylakoid membranes against free radical-induced photodamage. J. Photochem. Photobiol. B 38, 253-257.   DOI
57 Wang, R., Dillon, C.P., Shi, L.Z., Milasta, S., Carter, R., Finkelstein, D., McCormick, L.L., Fitzgerald, P., Chi, H., Munger, J., et al. (2011). The transcription factor Myc controls metabolic reprogramming upon T lymphocyte activation. Immunity 35, 871-882.   DOI
58 Wondrak, G.T., Jacobson, M.K., and Jacobson, E.L. (2005). Identification of quenchers of photoexcited States as novel agents for skin photoprotection. J. Pharmacol. Exp. Ther. 312, 482-491.   DOI
59 Xie, K., Qin, Q., Long, Z., Yang, Y., Peng, C., Xi, C., Li, L., Wu, Z., Daria, V., Zhao, Y., et al. (2021). High-throughput metabolomics for discovering potential biomarkers and identifying metabolic mechanisms in aging and Alzheimer's disease. Front. Cell Dev. Biol. 9, 602887.   DOI
60 Zarse, K., Schmeisser, S., Groth, M., Priebe, S., Beuster, G., Kuhlow, D., Guthke, R., Platzer, M., Kahn, C.R., and Ristow, M. (2012). Impaired insulin/ IGF1 signaling extends life span by promoting mitochondrial L-proline catabolism to induce a transient ROS signal. Cell Metab. 15, 451-465.   DOI
61 Zou, W., Liu, X., Yue, P., Khuri, F.R., and Sun, S.Y. (2007). PPARgamma ligands enhance TRAIL-induced apoptosis through DR5 upregulation and c-FLIP downregulation in human lung cancer cells. Cancer Biol. Ther. 6, 99-106.   DOI
62 Bartels, T., De Schepper, S., and Hong, S. (2020). Microglia modulate neurodegeneration in Alzheimer's and Parkinson's diseases. Science 370, 66-69.   DOI
63 Liang, X., Zhang, L., Natarajan, S.K., and Becker, D.F. (2013). Proline mechanisms of stress survival. Antioxid. Redox Signal. 19, 998-1011.   DOI
64 Liu, W., Le, A., Hancock, C., Lane, A.N., Dang, C.V., Fan, T.W., and Phang, J.M. (2012). Reprogramming of proline and glutamine metabolism contributes to the proliferative and metabolic responses regulated by oncogenic transcription factor c-MYC. Proc. Natl. Acad. Sci. U. S. A. 109, 8983-8988.   DOI
65 Liu, Y., Borchert, G.L., Donald, S.P., Diwan, B.A., Anver, M., and Phang, J.M. (2009). Proline oxidase functions as a mitochondrial tumor suppressor in human cancers. Cancer Res. 69, 6414-6422.   DOI
66 Allweis, C., Landau, T., Abeles, M., and Magnes, J. (1966). The oxidation of uniformly labelled albumin-bound palmitic acid to CO2 by the perfused cat brain. J. Neurochem. 13, 795-804.   DOI
67 Barber, C.N. and Raben, D.M. (2019). Lipid metabolism crosstalk in the brain: glia and neurons. Front. Cell. Neurosci. 13, 212.   DOI
68 Belanger, M., Allaman, I., and Magistretti, P.J. (2011). Brain energy metabolism: focus on astrocyte-neuron metabolic cooperation. Cell Metab. 14, 724-738.   DOI
69 Liu, Y., Borchert, G.L., Surazynski, A., Hu, C.A., and Phang, J.M. (2006). Proline oxidase activates both intrinsic and extrinsic pathways for apoptosis: the role of ROS/superoxides, NFAT and MEK/ERK signaling. Oncogene 25, 5640-5647.   DOI
70 Crabtree, G.W., Park, A.J., Gordon, J.A., and Gogos, J.A. (2016). Cytosolic accumulation of L-proline disrupts GABA-ergic transmission through GAD blockade. Cell Rep. 17, 570-582.   DOI
71 Martinat, M., Rossitto, M., Di Miceli, M., and Laye, S. (2021). Perinatal dietary polyunsaturated fatty acids in brain development, role in neurodevelopmental disorders. Nutrients 13, 1185.   DOI
72 Solana, C., Pereira, D., and Tarazona, R. (2018). Early senescence and leukocyte telomere shortening in SCHIZOPHRENIA: a role for cytomegalovirus infection? Brain Sci. 8, 188.   DOI
73 Sreedharan, J., Blair, I.P., Tripathi, V.B., Hu, X., Vance, C., Rogelj, B., Ackerley, S., Durnall, J.C., Williams, K.L., Buratti, E., et al. (2008). TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis. Science 319, 1668-1672.   DOI
74 Srivastava, R., Faust, T., Ramos, A., Ishizuka, K., and Sawa, A. (2018). Dynamic changes of the mitochondria in psychiatric illnesses: new mechanistic insights from human neuronal models. Biol. Psychiatry 83, 751-760.   DOI
75 Steinlin, M., Boltshauser, E., Steinmann, B., Wichmann, W., and Niemeyer, G. (1989). Hyperprolinaemia type I and white matter disease: coincidence or causal relationship? Eur. J. Pediatr. 149, 40-42.   DOI
76 Stokin, G.B. and Goldstein, L.S. (2006). Axonal transport and Alzheimer's disease. Annu. Rev. Biochem. 75, 607-627.   DOI
77 Surmeier, D.J. (2007). Calcium, ageing, and neuronal vulnerability in Parkinson's disease. Lancet Neurol. 6, 933-938.   DOI
78 Szabados, L. and Savoure, A. (2010). Proline: a multifunctional amino acid. Trends Plant Sci. 15, 89-97.   DOI
79 Di Paolo, G., Moskowitz, H.S., Gipson, K., Wenk, M.R., Voronov, S., Obayashi, M., Flavell, R., Fitzsimonds, R.M., Ryan, T.A., and De Camilli, P. (2004). Impaired PtdIns(4,5)P2 synthesis in nerve terminals produces defects in synaptic vesicle trafficking. Nature 431, 415-422.   DOI
80 de Oliveira Figueiredo, E.C., Bondiolotti, B.M., Laugeray, A., and Bezzi, P. (2022). Synaptic plasticity dysfunctions in the pathophysiology of 22q11 deletion syndrome: is there a role for astrocytes? Int. J. Mol. Sci. 23, 4412.   DOI
81 Dienel, G.A. (2019). Brain glucose metabolism: integration of energetics with function. Physiol. Rev. 99, 949-1045.   DOI
82 Ebert, D., Haller, R.G., and Walton, M.E. (2003). Energy contribution of octanoate to intact rat brain metabolism measured by 13C nuclear magnetic resonance spectroscopy. J. Neurosci. 23, 5928-5935.   DOI
83 Eggers, A.E. (2013). A serotonin hypothesis of schizophrenia. Med. Hypotheses 80, 791-794.   DOI
84 Falabella, M., Vernon, H.J., Hanna, M.G., Claypool, S.M., and Pitceathly, R. (2021). Cardiolipin, mitochondria, and neurological disease. Trends Endocrinol. Metab. 32, 224-237.   DOI
85 Feigenson, K.A., Kusnecov, A.W., and Silverstein, S.M. (2014). Inflammation and the two-hit hypothesis of schizophrenia. Neurosci. Biobehav. Rev. 38, 72-93.   DOI
86 Fielder, E., von Zglinicki, T., and Jurk, D. (2017). The DNA damage response in neurons: die by apoptosis or survive in a senescence-like state? J. Alzheimers Dis. 60(s1), S107-S131.   DOI
87 Tang, H. and Pang, S. (2016). Proline catabolism modulates innate immunity in Caenorhabditis elegans. Cell Rep. 17, 2837-2844.   DOI