• Title/Summary/Keyword: Physiological Controlling Factors

Search Result 22, Processing Time 0.061 seconds

Effects of a Self-control Promotion Program on Self-efficacy, Self-care and Physiological Indicators of Patients with Diabetes Living in Local Communities (자기조절증진 프로그램이 지역사회 당뇨병환자의 자기효능과 자가간호행위 및 생리적 지표에 미치는 영향)

  • Kim, Young-Sin;Jo, Yeon-Soon;Choo, Hyang-Im;Han, Eun-Hae;Kim, Chun-Mi
    • Journal of Korean Academy of Rural Health Nursing
    • /
    • v.5 no.1
    • /
    • pp.5-15
    • /
    • 2010
  • Purpose: This study was conducted to examine the effects of a self-control promotion program on self-efficacy, self-care and physiological indicators of patients with diabetes who live in local communities. Method: This research was designed using a nonequivalent control group pre, posttest study. Data were collected from December, 2008 through March, 2009. The participants of the study consisted of 93 patients with diabetes who live in a local community. A self-control promotion program was provided for the experimental group for 12 weeks. Data were collected through self-report questionnaires and direct measurements, and analyzed using descriptive statistics, $X^2$-test, and repeated measures ANOVA. Results: There were significant differences in self-efficacy and self-care between the experimental and control groups. However, there were no significant differences in physiological indicators such as fasting blood sugar, HbA1C, BMI, and BP between the two groups. Conclusion: The results indicate that the self-control promotion program was effective in promoting self-efficacy and self-care, which are crucial factors in controlling diabetes mellitus. However, a longitudinal study needs to be done to confirm the effects of self-control promotion programs on long-term glucose control.

Research status of transcription factors involved in controlling gene expression by nitrate signaling in higher plants (고등식물의 질산시그널에 의한 유전자 발현제어 관련 전사인자의 연구현황)

  • Jung, Yu Jin;Park, Joung Soon;Go, Ji Yun;Lee, Hyo Ju;Kim, Jin Young;Lee, Ye Ji;Nam, Ki Hong;Cho, Yong-Gu;Kang, Kwon Kyoo
    • Journal of Plant Biotechnology
    • /
    • v.48 no.3
    • /
    • pp.124-130
    • /
    • 2021
  • Nitrate is an important nutrient and signaling molecule in plants that modulates the expression of many genes and regulates plant growth. In this study, we cover the research status of transcription factors related to the control of gene expression by nitrate signaling in higher plants. Nitrate reductase is a key enzyme in nitrogen assimilation, as it catalyzes the nitrate-to-nitrite reduction process in plants. A variety of factors, including nitrate, light, metabolites, phytohormones, low temperature, and drought, modulate the expression levels of nitrate reductase genes and nitrate reductase activity, which is consistent with the physiological role if. Recently, several transcription factors controlling the expression of nitrate reductase genes have been identified in higher plants. NODULE-INCEPTION-Like Proteins (NLPs) are transcription factors responsible for the nitrate-inducible expression of nitrate reductase genes. Since NLPs also control the nitrate-inducible expression of genes encoding the nitrate transporter, nitrite transporter, and nitrite reductase, the expression levels of nitrate reduction pathway-associated genes are coordinately modulated by NLPs in response to nitrate. Understanding the function of nitrate in plants will be useful to create crops with low nitrogen use.

Isolation and Characterization of Endosome Subpopulation in Chinese Hamster Ovarian Cells

  • Suh, Duk-Joon;Park, Mi-Yeon;Jung, Dong-Keun;Bae, Hae-Rahn
    • The Korean Journal of Physiology
    • /
    • v.30 no.2
    • /
    • pp.197-208
    • /
    • 1996
  • Endosomes lower their internal pH by an ATP-driven proton pump, which is critical to dissociation of many receptor-ligand complexes, the first step in the intracellular sorting of internalized receptors and ligands. Endosomes are known to exhibit n great range of pH values that can vary between 5.0 and 7.0 within a single cell although the factors that regulate endosomal pH remain uncertain. To evaluate the morphological and topological differences of endosomes in the different stages, confocal microscopy was used. The early endosomes labeled with fluorescein isothiocyanate-dextran for 10 min at $37^{\circ}C$ were identifiable at the peripheral and tubule-vesicular endosome compartment. In contrast, the late endosomes formed by 10 min pulse and 20 min trace were located deeper in the cytoplasm and showed more vesicular features than early endosomes. For the purpose of determining whether ATP-dependent acidification was heterogeneous and whether the differences in acidification were attributed to differences in the activity of $Na^{+}-K^{+}$-ATPase and/or $Cl^{-}$ channel, endocytic compartments were fractionated into subpopulation using percoll gradient and measured ATP-dependent acidification. While all fractions exhibited ATP-dependent acidification activity, both the initial rate of acidification and extent of proton translocation were lower in early endosomes and gradually increased in late endosomes. Phosphorylation by PKA and ATP enhanced ATP-dependent acidification in both early and late endosomes, hut there was no difference in the degree of enhancement by phosphorylation between two subpopulations. When ATP-dependent acidification was determined in the presence or absence of vanadate ($Na_{3}VO_{4}$) or ouabain, only early endosomes exhibited the vanadate or ouabain dependent stimulation of acidification activity, suggesting the inhibition of $Na^{+}-K^{+}$-ATPase. Therefore, it seems probable that the inhibition of early endosome acidification by $Na^{+}-K^{+}$-ATPase observed in vitro at least in part plays a physiological role in controlling the acidification of early endosomes in vivo.

  • PDF

Endocytic Regulation of EGFR Signaling

  • Chung, Byung-Min
    • Interdisciplinary Bio Central
    • /
    • v.4 no.2
    • /
    • pp.3.1-3.7
    • /
    • 2012
  • Epidermal growth factor receptor (EGFR) is a member of the ErbB family (ErbB1-4) of receptor tyrosine kinases (RTKs). EGFR controls numerous physiological functions, including cell proliferation, migration, differentiation and survival. Importantly, aberrant signaling by EGFR has been linked to human cancers in which EGFR and its various ligands are frequently overexpressed or mutated. EGFR coordinates activation of multiple downstream factors and is subject of various regulatory processes as it mediates biology of the cell it resides in. Therefore, many studies have been devoted to understanding EGFR biology and targeting the protein for the goal of controlling tumor in clinical settings. Endocytic regulation of EGFR offers a promising area for targeting EGFR activity. Upon ligand binding, the activated receptor undergoes endocytosis and becomes degraded in lysosome, thereby terminating the signal. En route to lysosome, the receptor becomes engaged in activating various signaling pathways including PI-3K, MAPK and Src, and endocytosis may offer both spatial and temporal regulation of downstream target activation. Therefore, endocytosis is an important regulator of EGFR signaling, and increasing emphasis is being placed on endocytosis in terms of cancer treatment and understanding of the disease. In this review, EGFR signaling pathway and its intricate regulation by endocytosis will be discussed.

ZAS3 represses NFκB-dependent transcription by direct competition for DNA binding

  • Hong, Joung-Woo;Wu, Lai-Chu
    • BMB Reports
    • /
    • v.43 no.12
    • /
    • pp.807-812
    • /
    • 2010
  • $NF{\kappa}B$ and ZAS3 are transcription factors that control important cellular processes including immunity, cell survival and apoptosis. Although both proteins bind the ${\kappa}B$-motif, they produce opposite physiological consequences; $NF{\kappa}B$ activates transcription, promotes cell growth and is often found to be constitutively expressed in cancer cells, while ZAS3 generally represses transcription, inhibits cell proliferation and is downregulated in some cancers. Here, we show that ZAS3 inhibits $NF{\kappa}B$-dependent transcription by competing with $NF{\kappa}B$ for the ${\kappa}B$-motif. Transient transfection studies show that N-terminal 645 amino acids is sufficient to repress transcription activated by $NF{\kappa}B$, and that the identical region also possesses intrinsic repression activity to inhibit basal transcription from a promoter. Finally, in vitro DNA-protein interaction analysis shows that ZAS3 is able to displace $NF{\kappa}B$ by competing with $NF{\kappa}B$ for the ${\kappa}B$-motif. It is conceivable that ZAS3 has therapeutic potential for controlling aberrant activation of $NF{\kappa}B$ in various diseases.

The Role of Angiogenesis in Obesity (비만에서의 혈관신생의 역할)

  • Yoon, Michung
    • Journal of Life Science
    • /
    • v.24 no.5
    • /
    • pp.573-587
    • /
    • 2014
  • Angiogenesis, the formation of new capillary blood vessels, is a tightly regulated process. Under normal physiological conditions, angiogenesis only takes place during embryonic development, wound healing, and female menstruation. Dysregulation of angiogenesis is associated with many diseases, such as cancer, rheumatoid arthritis, psoriasis, and proliferative retinopathy. The growth and expansion of adipose tissue require the formation of new blood vessels. Adipose tissue is probably the most highly vascularized tissue in the body, as each adipocyte is surrounded by capillaries, and the angiogenic vessels supply nutrients and oxygen to adipocytes. Accumulating evidence shows that capillary endothelial cells communicate with adipocytes via paracrine signaling pathways, extracellular components, and direct cell-cell interactions. Activated adipocytes produce multiple angiogenic factors, including VEGF, FGF-2, leptin, and HGF, which either alone or cooperatively stimulate the expansion and metabolism of adipose tissue by increasing adipose tissue vasculature. Recently, it was demonstrated that antiangiogenic herbal Ob-X extracts and Korean red ginseng extracts reduce adipose tissue mass and suppress obesity by inhibiting angiogenesis in obese mice. Thus, angiogenesis inhibitors provide a promising therapeutic approach for controlling human obesity and related disorders.

Physiological and Genetic Factors Controlling Streptomyces Regulatory Gene Expression Involved in Antibiotic Biosynthesis

  • Kim Eung Su
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2002.10a
    • /
    • pp.68-72
    • /
    • 2002
  • While the biosynthetic gene cluster encoding the pigmented antibiotic actinorhodin is present in the two closely related bacterial species, Streptomyces lividans and Streptomyces coelicolor, it normally is expressed only in S. coelicolor---generating the deep blue colonies responsible for the S. coelicolor name. However, multiple copies of the afsR2 gene, which activates actinorhodin synthesis, result in the ability of S. lividansto also synthesize large amounts of actinorhodin. Here we report that the phenotypic property that historicially distinguishes these two Streptomycesspecies is determined conditionally by the carbon source used for culture. Whereas growth on glucose repressed actinorhodin production in S. lividans, culture on solid media containing glycerol as the sole carbon source dramatically increased the expression of afsR2 mRNA---leading to extensive actinorhodin synthesis by S. lividansand obliterating its phenotypic distinction from S. coelicolor. afsR2 transcription under these conditions was developmentally regulated, rising sharply at the time of aerial mycelium formation and coinciding temporally with the onset of actinorhodin production. Our results, which identify media-dependent parallel pathways that regulate actinorhodin synthesis in S. lividans, demonstrate carbon source control of actinorhodin production through the regulation of afsR2 mRNA synthesis. The nucleotide sequences of afsR2 revealed two putative important domains; the domain containing direct repeats in the middle and the domain homologous to sigma factor sequence in the C-terminal end. In this work, we constructed various sized afsR2-derivatives and compared the actinorhodin stimulating effects in S. lividans TK21. The experimental data indicate that the domain homologous to sigma factor sequence in the C-terminal end of afsR2 plays a critical role as an antibiotic stimulating function. In addition, we also observed that the single copy integration of afsR2 regulatory gene into S. lividans TK21 chromosome significantly activates antibiotic overproduction.

  • PDF

Endothelial Ca2+ signaling-dependent vasodilation through transient receptor potential channels

  • Hong, Kwang-Seok;Lee, Man-Gyoon
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.24 no.4
    • /
    • pp.287-298
    • /
    • 2020
  • Ca2+ signaling of endothelial cells plays a critical role in controlling blood flow and pressure in small arteries and arterioles. As the impairment of endothelial function is closely associated with cardiovascular diseases (e.g., atherosclerosis, stroke, and hypertension), endothelial Ca2+ signaling mechanisms have received substantial attention. Increases in endothelial intracellular Ca2+ concentrations promote the synthesis and release of endothelial-derived hyperpolarizing factors (EDHFs, e.g., nitric oxide, prostacyclin, or K+ efflux) or directly result in endothelial-dependent hyperpolarization (EDH). These physiological alterations modulate vascular contractility and cause marked vasodilation in resistance arteries. Transient receptor potential (TRP) channels are nonselective cation channels that are present in the endothelium, vascular smooth muscle cells, or perivascular/sensory nerves. TRP channels are activated by diverse stimuli and are considered key biological apparatuses for the Ca2+ influx-dependent regulation of vasomotor reactivity in resistance arteries. Ca2+-permeable TRP channels, which are primarily found at spatially restricted microdomains in endothelial cells (e.g., myoendothelial projections), have a large unitary or binary conductance and contribute to EDHFs or EDH-induced vasodilation in concert with the activation of intermediate/small conductance Ca2+-sensitive K+ channels. It is likely that endothelial TRP channel dysfunction is related to the dysregulation of endothelial Ca2+ signaling and in turn gives rise to vascular-related diseases such as hypertension. Thus, investigations on the role of Ca2+ dynamics via TRP channels in endothelial cells are required to further comprehend how vascular tone or perfusion pressure are regulated in normal and pathophysiological conditions.

Controlling Factors of Feed Intake and Salivary Secretion in Goats Fed on Dry Forage

  • Sunagawa, K.;Ooshiro, T.;Nakamura, N.;Nagamine, I.;Shiroma, S.;Shinjo, A.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.10
    • /
    • pp.1414-1420
    • /
    • 2005
  • The purpose of this research was to determine whether or not feeding induced hypovolemia (decreases in plasma volume) and decreases in plasma bicarbonate concentration caused by loss of $NaHCO_3$ from the blood, act to suppress feed intake and saliva secretion volumes during the initial stages of feeding in goats fed on dry forage. The animals were fed twice a day at 10:30 and at 16:00 for 2 h each time. Prior to the morning feeding, the collected saliva (3-5 kg) was infused into the rumen. During the morning 2 h feeding period (10:30 to 12:30), the animals were fed 2-3 kg of roughly crushed alfalfa hay cubes. At 16:00, the animals were fed again with 0.8 kg of alfalfa hay cubes, 200 g of commercial ground concentrate and 20 g of sodium bicarbonate. In order to compensate for water or $NaHCO_3$ lost through saliva during initial stages of feeding, a 3 h intravenous infusion (17-19 ml/min) of artificial mixed saliva (ASI) or mannitol solution (MI) was begun 1 h prior to the morning feeding and continued until the conclusion of the 2 h feeding period. The physiological state of the goats in the present experiment remained unchanged after parotid gland fistulation. Circulating plasma volume decreases caused by feeding (estimated by increases in plasma total protein concentration) were significantly suppressed by the ASI and MI treatments. During the first 1 h of the 2 h feeding period, plasma osmolality in the ASI treatment was the same as the NI (non-infusion control) treatment, while plasma osmolality in the MI treatment was significantly higher. In comparison to the NI treatment, cumulative feed intake levels for the duration of the 2 h feeding period in the ASI and MI treatments increased markedly by 56.6 and 88.3%, respectively. On the other hand, unilateral cumulative parotid saliva secretion volume following the termination of the 2 h feeding period in the ASI treatment was 50.7% higher than that in the NI treatment. MI treatment showed the same level as the NI treatment. The results of the present experiment proved that the humoral factors involved in the suppression of feeding and saliva secretion during the initial stages of feeding in goats fed on dry forage, are feeding induced hypovolemia and decrease in plasma $HCO_3^-$ concentration caused by loss of $NaHCO_3$ from the blood.

Variation of Primary Productivity and Phytoplankton Community in the Weirs of Mid and Downstream of the Nakdong River during Fall and Early Winter: Application of Phytoplankton Pigments and CHEMTAX (추계-동계 낙동강 중 하류 보 구간 일차생산력 및 식물플랑크톤 군집조성 변화: 식물플랑크톤 색소와 CHEMTAX 활용)

  • Choi, Jisoo;Min, Jun Oh;Choi, Bohyung;Kang, Jae Joong;Choi, Kwangsoon;Lee, Sang Heon;Shin, Kyung Hoon
    • Korean Journal of Ecology and Environment
    • /
    • v.52 no.2
    • /
    • pp.81-93
    • /
    • 2019
  • Phytoplankton is one of the important primary producers providing organic matter through photosynthesis in aquatic environments. In order to determine a temporal and spatial variation in primary productivity after weir construction in the Nakdong River, we investigated carbon uptake rates using in-situ $^{13}C$ labeling experiments and identified algal communities contributing to primary productivity using HPLC-CHEMTAX analysis from October to December, 2017. The primary productivity gradually decreased from fall to early winter season ($249{\sim}933mgC\;m^{-2}d^{-1}$ in October, $64{\sim}536mgC\;m^{-2}d^{-1}$ in November and $60{\sim}274mgC\;m^{-2}d^{-1}$ in December, respectively). This is attributed to the temporally declining light intensity and the decreasing biomass and physiological activity of phytoplankton in winter. The contribution of diatoms to the phytoplankton community in the Nakdong River was approximately 63% at all the sampling sites and seasons, while the contribution of cryptophytes increased from 9% in October to 32% in November and December. The temporal changes in the primary productivity and the dominant phytoplankton species in the mid and downstream weirs of the Nakdong River was investigated for the first time, after construction of the weirs, and major environmental factors controlling the temporal variation in primary productivity and phytoplankton communities were identified in this study. We suggest that seasonal field investigations will provide further information on the major environmental factors which affect the annual variation of primary productivity and phytoplankton communities.