• Title/Summary/Keyword: Physics-based

Search Result 2,771, Processing Time 0.038 seconds

Power control of CiADS core with the intensity of the proton beam

  • Yin, Kai;Ma, Wenjing;Cui, Wenjuan;He, Zhiyong;Li, Xinxin;Dang, Shiwu;Yang, Feng;Guo, Yuhui;Duan, Limin;Li, Meng;Hou, Yikai
    • Nuclear Engineering and Technology
    • /
    • v.54 no.4
    • /
    • pp.1253-1260
    • /
    • 2022
  • This paper reports the control method for the core power of the China initiative Accelerator Driven System (CiADS) facility. In the CiADS facility, an intense external neutron source provided by a proton accelerator coupled to a spallation target is used to drive a sub-critical reactor. Without any control rod inside the sub-critical reactor, the core power is controlled by adjusting the proton beam intensity. In order to continuously change the beam intensity, an adjustable aperture is considered to be used at the Low Energy Beam Transport (LEBT) line of the accelerator. The aperture size is adjusted based on the Proportional Integral Derivative (PID) controllers, by comparing either the setting beam intensity or the setting core power with the measured value. To evaluate the proposed control method, a CiADS core model is built based on the point reactor kinetics model with six delayed neutron groups. The simulations based on the CiADS core model have indicated that the core power can be controlled stably by adjusting the aperture size. The response time in the adjustment of the core power depends mainly on the adjustment time of the beam intensity.

Research on the calculation method of sensitivity coefficients of reactor power to material density based on Monte Carlo perturbation theory

  • Wu Wang;Kaiwen Li;Yuchuan Guo;Conglong Jia;Zeguang Li;Kan Wang
    • Nuclear Engineering and Technology
    • /
    • v.55 no.12
    • /
    • pp.4685-4694
    • /
    • 2023
  • The ability to calculate the material density sensitivity coefficients of power with respect to the material density has broad application prospects for accelerating Monte Carlo-Thermal Hydraulics iterations. The second-order material density sensitivity coefficients for the general Monte Carlo score have been derived based on the differential operator sampling method in this paper, and the calculation of the sensitivity coefficients of cell power scores with respect to the material density has been realized in continuous-energy Monte Carlo code RMC. Based on the power-density sensitivity coefficients, the sensitivity coefficients of power scores to some other physical quantities, such as power-boron concentration coefficients and power-temperature coefficients considering only the thermal expansion, were subsequently calculated. The effectiveness of the proposed method is demonstrated in the power-density coefficients problems of the pressurized water reactor (PWR) moderator and the heat pipe reactor (HPR) reflectors. The calculations were carried out using RMC and the ENDF/B-VII.1 neutron nuclear data. It is shown that the calculated sensitivity coefficients can be used to predict the power scores accurately over a wide range of boron concentration of the PWR moderator and a wide range of temperature of HPR reflectors.

A Low-Density Graphite-Polymer Composite as a Bipolar Plate for Proton Exchange Membrane Fuel Cells

  • Dhakate, S.R.;Sharma, S.;Mathur, R.B.
    • Carbon letters
    • /
    • v.14 no.1
    • /
    • pp.40-44
    • /
    • 2013
  • The bipolar plate is the most important and most costly component of proton exchange membrane fuel cells. The development of a suitable low density bipolar plate is scientifically and technically challenging due to the need to maintain high electrical conductivity and mechanical properties. Here, bipolar plates were developed from different particle sizes of natural and expanded graphite with phenolic resin as a polymeric matrix. It was observed that the particle size of the reinforcement significantly influences the mechanical and electrical properties of a composite bipolar plate. The composite bipolar plate based on expanded graphite gives the desired mechanical and electrical properties as per the US Department of Energy target, with a bulk density of 1.55 $g.cm^{-3}$ as compared to that of ~1.87 $g.cm^{-3}$ for a composite plate based on natural graphite (NG). Although the bulk density of the expanded-graphite-based composite plate is ~20% less than that of the NG-based plate, the I-V performance of the expanded graphite plate is superior to that of the NG plate as a consequence of the higher conductivity. The expanded graphite plate can thus be used as an electromagnetic interference shielding material.

Determination of the number of 235U target nuclei in the irregular target using a fission time projection chamber

  • Jiajun Zhang;Jun Xiao;Junjie Sun;Mingzhi Zhang;Taiping Peng;Pu Zheng
    • Nuclear Engineering and Technology
    • /
    • v.56 no.2
    • /
    • pp.444-450
    • /
    • 2024
  • Based on multiple measurements of ionization loss, the Time Projection Chamber (TPC) combines strong tracking ability with particle identification ability in a large momentum range, which is an important advantage of TPC detection technology over traditional ionization measurement technology. According to these two characteristics of TPC, applying it to the measurement of fission cross-section can greatly improve the measurement accuracy. During the measurement of the fission cross-section, the number of target nuclei is required to be accurately measured. So this paper introduces a method for measuring the number of 235U target nuclei using a fission TPC system. The measurement result agrees with the reference value, and relative error is around 1 %.

Development of a Physics-Based Design Framework for Aircraft Design using Parametric Modeling

  • Hong, Danbi;Park, Kook Jin;Kim, Seung Jo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.3
    • /
    • pp.370-379
    • /
    • 2015
  • Handling constantly evolving configurations of aircraft can be inefficient and frustrating to design engineers, especially true in the early design phase when many design parameters are changeable throughout trade-off studies. In this paper, a physics-based design framework using parametric modeling is introduced, which is designated as DIAMOND/AIRCRAFT and developed for structural design of transport aircraft in the conceptual and preliminary design phase. DIAMOND/AIRCRAFT can relieve the burden of labor-intensive and time-consuming configuration changes with powerful parametric modeling techniques that can manipulate ever-changing geometric parameters for external layout of design alternatives. Furthermore, the design framework is capable of generating FE model in an automated fashion based on the internal structural layout, basically a set of design parameters describing the structural members in terms of their physical properties such as location, spacing and quantities. The design framework performs structural sizing using the FE model including both primary and secondary structural levels. This physics-based approach improves the accuracy of weight estimation significantly as compared with empirical methods. In this study, combining a physics-based model with parameter modeling techniques delivers a high-fidelity design framework, remarkably expediting otherwise slow and tedious design process of the early design phase.

Testing delayed AGN feedback using star formation rate measurements by SED fitting with JCMT/SCUBA-2 data

  • Kim, Changseok;Jadhav, Yashashree;Woo, Jong-Hak;Chung, Aeree;Baek, Junhyun;Lee, Jeong Ae;Shin, Jaejin;Hwang, Ho Seong;Luo, Rongxin;Son, Donghoon;Kim, Hyungi;Woo, Hyuk
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.40.2-40.2
    • /
    • 2021
  • The impact of AGN on star formation is one of the main questions in AGN-galaxy coevolution studies. However, direct evidence of AGN feedback is still rare. One of the main obstacles is that various star formation rate (SFR) indicators are contaminated by AGN contribution. We present IR-based SFR measurements of a sample of 52 local (z<0.3) AGNs, which were selected based on kinematical properties of ionized gas outflows, using SED analysis with JCMT/SCUBA-2 data. First, we will compare IR-based SFR with other SFR indicators to check the reliability of the SFR indicators. Second, we will discuss the contribution of Mid-IR emission from hot dust of AGN torus by comparing SED fitting results with and without including AGN dust component. Finally, we will report the correlation between specific SFR (sSFR) and AGN activity (e.g., outflow strength or Eddington ratio) as evidence of no instantaneous feedback and discuss the implications of these results

  • PDF

Development of Problem-Based Learning in an English-Mediated College Science Course: Design-Based Research on Four Semesters Instruction

  • LAHAYE, Rob;LEE, Sang-eun
    • Educational Technology International
    • /
    • v.19 no.2
    • /
    • pp.229-254
    • /
    • 2018
  • Universities in Korea have driven universities' new attempts to adopt more learner-centered and active learning in English. Problem-based Learning (PBL) is one of the well-known constructive teaching and learning methodologies in higher education. Our research goal was to design and develop the optimal PBL practices for a college physics course taught in English to promote learning and course satisfaction. For four semesters, we have tried and adjusted PBL components, and looked at the trend of the exam scores and group work achievement in each semester. We found that the number of problems and the duration of problem solving are the critical factors that influence the effect of PBL in a college physics course taught in English by going through iterative implementation. The iterative process of applying, designing, and constructing PBL to physics classes was meaningful not only in that we have found the optimal PBL model for learning a college physics course, but also in that we have been reflecting on the continuous interaction with learners during the course.