• Title/Summary/Keyword: Physicochemical properties of soils

Search Result 84, Processing Time 0.023 seconds

Basic study on the biological and physicochemical properties of burnt forest soil for the ecological restoration by organic waste (유기성폐자원을 이용한 산불토양의 생태학적 복원을 위한 토양의 생물학적, 물리화학적 기초특성연구)

  • Jung, Young-Ryul;Song, In-Geun;Kim, Young-Jun
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.13 no.1
    • /
    • pp.79-89
    • /
    • 2005
  • Forest soils were analyzed on their biological and physicochemical properties for the ecological restoration of burnt forest soil using organic wastes and proper microorganisms. Three kinds of soil samples were collected from undamaged soil(US), naturally restoring soil(NS) and artificially restoring soil(AS). All soil samples were sandy soil and acidic soil, ranged pH 5.34~5.78. Moisture content was higher in the soil of NS region. And the others were similar. Total organic matter and soluble sugar were higher at the surface, generally. Heterotrophic soil microbes were abundant at the surface soil of NS and subsoil of AS. Dehydrogenase, cellulase and phosphatase activities were higher at the NS soil. Especially, Dehydrogenase activity as primary index of soil microbial process showed high correlationship with moisture content(r=0.90, P < 0.05).

  • PDF

Characteristics of artificial Soils Used alone or in a Blend with Field Soil for the Greening of Artificial Ground (인공지반의 녹화를 위해서 단용 또는 노지토양과 혼합하여 이용되는 인공토양의 특성)

  • 허근영;심경구
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.28 no.2
    • /
    • pp.28-38
    • /
    • 2000
  • The aim of this study is evaluate artificial soils which are used alone or in a blend with field soil for the greening of artificial ground. To achieve these, determination of physicochemical properties was made in four artificial media[Perlite small grain(PSG), perlite large grain(PLG), crushed porous glass+bark(AS), crushed porous glass(CPG)] used alone and/or in a blend with field soil, then evaluation of their effect on th plant growth of Ligustrum obtusifolium and Syringa vulgaris were conducted. In bulk density of root media at field capacity and the saturated hydraulic conductivity, LG and AS showed good performance. But, PLG was though to be unsuitable as artificial soil when used alone because of poor plant growth. PLG, AS, and CPG were thought to be good when it is used in a blend with field soil. But, PSG was thought to be unsuitable. In the result, PSG is recommended as artificial soil which is used alone for greening of artificial ground. PLG is recommended as artificial soil which is used in a blend with field soil. AS is recommended as artificial soil which is used alone and in a blend with field soil. Thought CPG+field soil(v/v, 1:1) might be undesirable in consideration of the chemical properties in six months after planting, it was thought to be superior to th other treatments in the plant growth. CPG can be used as artificial soil which is used in a blend with field soil. Follow-up studies are being conducted to investigate their effects on the plant growth of the other plants and the practical use of them in artificial grounds.

  • PDF

Interaction of industrial effluents and bentonite: a comparative study of their physico-chemical and geotechnical characteristics

  • Murugaiyan, V.;Saravanane, R.;Sundararajan, T.
    • Geomechanics and Engineering
    • /
    • v.1 no.4
    • /
    • pp.291-306
    • /
    • 2009
  • One-dimensional soil-column studies were carried out to understand the interaction of three industrial effluents namely amino acid ('highly acidic'), surfactant ('highly organic') and pharmaceutical ('organic and toxic') on the physicochemical behavior, index properties and shear strength of bentonite due to artificial contamination extending to nearly 300 days. Changes in inorganic and organic pollutants present in the effluents due to the interaction of the above effluents and soil were assessed to understand the physico-chemical behaviour. Batch and continuous modes of operation, 8 hrs and 16 hrs Hydraulic Retention Time [HRT] and 25%, 50% concentrations of effluents, were the parameters considered. Amino acid, surfactant and pharmaceutical effluents have shown a high variation in pH (7 to 8) after artificial contamination on bentonite that is their original characteristics of the above effluents have been completely reversed. Further, it is found that the shear strength of bentonite has reduced by about 20%, and with respect to liquid limit and plastic limit shows an increasing trend with time within the period of contamination.

A Study of Physicochemical and Mineralogical Properties of Heavy Metal Contaminated-Soil Particles from the Kangwon and Donghae Mines (강원광산과 동해광산주변 중금속 함유 토양입자의 이화학적·광물학적 특성연구)

  • Lee, Choong Hyun;Kim, YoungJae;Lee, Seon Yong;Park, Chan Oh;Sung, Yoo Hyun;Lee, Jai-Young;Choi, Ui Kyu;Lee, Young Jae
    • Journal of the Mineralogical Society of Korea
    • /
    • v.26 no.3
    • /
    • pp.197-207
    • /
    • 2013
  • Soil samples collected at the Kangwon and Donghae mines were investigated for the characterization of heavy metals using physicochemical and mineralogical properties. Arsenic (As) concentrations of soil samples sieved above 18 mesh and under 325 mesh at the Kangwon mine are 250.5 to 445.7 ppm, respectively. For soil samples sieved above 18 mesh at the Donghae mine, the concentrations of As, Pb, and Zn are 70.4, 1,055, and 781.9, while 117.7 ppm for As, 2,295 ppm for Pb, and 1,346 ppm for Zn are shown for the samples sieved under 325 mesh. XRD and SEM data indicated that the samples from the Kangwon mine included quartz, mica, albite, chlorite, magnetite, and amphibole while those from the Donghae mine contained quartz, mica, kaolinite, chlorite, amphibole, and rutile. SEM-EDS showed that magnetite found in the samples at the Kangwon mine was positively correlated with arsenic concentrations whereas ilmenite in the samples from the Donghae mine contained only small amount of As. Our results suggest that physicochemical and mineralogical characterization plays an important role in optimizing recovery treatments of soils contaminated in mine development areas.

Characteristics and Genesis of Terrace Soils in Yeongnam Area -V : Soil Genesis and Classification (영남지역(嶺南地域)에 분포(分布)된 단구지토양(段丘地土壤)의 특성(特性)과 생성연구(生成硏究) -제(第)5보(報) : 토양생성(土壤生成)과 분류(分類))

  • Jung, Yeun-Tae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.19 no.4
    • /
    • pp.275-282
    • /
    • 1986
  • A series of studies on the properties of clayey terrace soils distributed at the inland (Yeongcheon) and coastal (Yeongjil) regions in Yeongnam district was carried out. On the base of the facts found and already reported about the macro morphological features as well as on pedological characters in micro scale, physicochemical properties, mineralogical characteristics etc., the present study dealt with soil genesis and tried to classify the soils for reasonable use and managements. 1. Although the both regions belonged to "Mesic" soil temperature regime and "red and yellow earths" areas of "Thornthwaite" pedo-climatic diagram, climatic indices as a soil forming factor indicate that the coastal Yeongil had milder than the inland Yeongcheon. 2. All the terrace soils had developed soil profiles with an "Argrllic B". Upyeong soils in Yeongil region had "Argillans" even in the "II B horizons" that possibly be "Paleo-argillic". 3. The bisequum profiles of Bancheon in Yeongcheon and Upyeong in Yeongil revealed that they were developed on Late Mesozoic shale and on semiconsolidated Tertiary deposits respectively, therefore the overlying clayey terrace deposits were assumed to be originated from the Early Quaternary deposits, Diluvium. 4. To supplement the Soil Taxonomy of USDA, the terrace soils with different degrees of gleyzation were classified as follows; Deogpyeong and Hwadong soils which have less than 50cm of paddified gley horizons (redness less than 0.5) in the upper part of the profiles by artificial surface irrigation, tentatively classified into "Anthrepiaquic Hapludalfs" and the Geugrag soils that have more than 50cm of paddified gley horizons within 1.2m of the profiles, into "Anthr-aquic Ochraqualfs" while the Upyeong soils that had greyish mottles in subsoils by natural ground water remain as an "Aquic Hapludalfs" the same as present. The Bancheon soils with free mottles are into "Typic Hapludalfs" as used at present.

  • PDF

Relations between Soil Physicochemical Properties and Ginger Growth (토양의 물리.화학적 성질과 생강 생육과의 관계)

  • Kim, Dong-Jin;Ahn, Byung-Koo;Lee, Jin-Ho
    • Korean Journal of Organic Agriculture
    • /
    • v.21 no.2
    • /
    • pp.283-294
    • /
    • 2013
  • Root-rot disease is a serious problem in ginger cultivation fields and it reduces the quality and productivity of ginger. This study was conducted to investigate the effects of different soil physical and chemical properties on the changes of ginger growth. As comparing the selected soil chemical properties after harvesting the ginger plants with those before planting them, the contents of total nitrogen and exchangeable $Mg^{2+}$ increased, whereas electrical conductivity (EC) and exchangeable $K^+$ content decreased. Potassium (K) concentrations in ginger plant were markedly higher in both its shoot and root parts ranging from 63.9 to $72.3g\;kg^{-1}$ and from 27.6 to $37.3g\;kg^{-1}$, respectively, which might be related to the decrease of exchangeable $K^+$ content in soils. Incidence rate of ginger root-rot disease in the plots ranges between 26.7% and 88.1%. It was higher in low elevation plots with clay loam soils than in high elevation plots. In addition, the incidence of the disease increased as affected by high temperature and humid condition during the growth and maturity stages of ginger. Therefore, soil texture, field slop, and drainage system as well as chemical properties should be considered to cultivate ginger plant.

Methanogenesis and Methane Oxidation in Paddy Fields under Organic Fertilization

  • Kim, Chungwoo;Walitang, Denver I.;Sa, Tongmin
    • Korean Journal of Environmental Agriculture
    • /
    • v.40 no.4
    • /
    • pp.295-312
    • /
    • 2021
  • BACKGROUND: Global warming is one of the most pressing environmental issues which concomitantly complicates global climate change. Methane emission is a balance between methanogenesis and methane consumption, both of which are driven by microbial actions in different ecosystems producing methane, one of the major greenhouse gases. Paddy fields are major sources of anthropogenic methane emissions and could be compounded by organic fertilization. METHODS AND RESULTS: Literature reviews were conducted to give an overview of the global warming conditions and to present the relationship of carbon and methane to greenhouse gas emissions, and the need to understand the underlying processes of methane emission. A more extensive review was done from studies on methane emission in paddy fields under organic fertilization with greater emphasis on long term amendments. Changes in paddy soils due to organic fertilization include alterations of the physicochemical properties and changes in biological components. There are diverse phylogenetic groups of methanogens and methane oxidizing bacteria involved in methane emission. Also, multiple factors influence methanogenesis and methane oxidation in rice paddy fields under organic fertilization and they should be greatly considered when developing mitigating steps in methane emission in paddy fields especially under long term organic fertilization. CONCLUSION(S): This review showed that organic fertilization, particularly for long term management practices, influenced both physicochemical and biological components of the paddy fields which could ultimately affect methanogenesis, methane oxidation, and methane emission. Understanding interrelated factors affecting methane emission helps create ways to mitigate their impact on global warming and climate change.

Studies on the Decomposition of Environmental Pollutants by Utilizing Microorganisms (미생물을 이용한 환경오염원의 분해에 관한 연구 II)

  • 이재구;김기철;김창한
    • Korean Journal of Microbiology
    • /
    • v.20 no.2
    • /
    • pp.53-66
    • /
    • 1982
  • 1. When Chong Ju and Chung Ju soils possessing different physicochemical properties were treated with 500 ppm of TOK and incubated in flooded anaerobic condition for 2, 4, and 6 months, respectively, they produced 4-Chloro-4'-amino diphenyl ether, 2,4-Dichloro-4'-amino diphenyl ether(amin-TOK), N-[4'-(4-Chlorophenoxy)] phenyl acetamide, and N-[4'-(4-Chlorophenoxy)] phenyl formamide as the metabolities. This result indicates that TOK undergose the reduction of its $NO_2\;to\;NH_2$ group, dechlorination, acetylation, and formylation under this condition. The cleavage of ether linkage does not occur. In addition, TOK degrades more readily in Chung Ju soil which is characterized by pH 6.43 and higher contents of $Ca^{++}$ and C.E.C. than in Chong Ju soil which is lower in pH, $Ca^{++}$, and C.E.C. 2. In the aerobic incubation of TOK of 25ppm in Chung Ju soil suspension for 21 days, the ratio of the resulting metabolites, TOK : amino-TOK : 4-Chloro-4'-amino diphenyl ether was 100 : 130 : 76. Meanwhile, in the 42 day incubation, the ratio was 100 : 19 : 5, which indicates that TOK in aerobic condition dose not necessrily degrade as a function of the incubation period. 3. The citrate buffer extract of Chung Ju soil has the capability of degrading TOK, which was verified to be due to the action of the microorganisms involved. 4. Twelye strains of soil bacteria were isolated from the TOK-treated soils. In the incubation of TOK in pure cultures of the respective isolates, the strain T-1-1 isolated from Chong Ju soil had almost no degradability whereas the strain T-2-3 was the most potent. The degradation of TOK by the isolates constituted mostly the reduction of the nitro group to amino group. 5. In a test for the degradability of TOK by some selected microorganisms, Pseudomonas species were more potent than fungi. Yet, Isolate B which had been isolated from Chung Ju soil suspension was the most potent.

  • PDF

Studies on Microflora of the Paddy and Upland Soils of Korea -I. Distribution of Microflora of the Paddy Soils (우리나라 논, 밭토양의 미생물상(微生物相)에 한 연구 -I. 논토양의 미생물(微生物) 분포조사(分布調査))

  • Yoo, Ick-Dong;Yun, Seh-Young;Lee, Myong-Goo;Rhu, Jin-Chang
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.16 no.2
    • /
    • pp.195-202
    • /
    • 1983
  • Sixty paddy soil samples were collected from the different Korean agricultural climatic area to find relationship between soil physicochemical properties and soil microorganisms. The results are summarized as follows : 1. The mean numbers of microorganisms in collected paddy soils were $121.8{\times}10^5$ in bacteria (B), $22.5{\times}10^5$ in actinomycetes (A) and $32.4{\times}10^3$ in fungi (F) per gr soil. The ratios of B/F, B/A, and A/F were 385, 5.1 and 82, respectively. 2. Number of soil microorganism was lowest in Mountainous area, lower in Eastern Coast, Gyeonggi Bay and Chungcheong Continental area, but higher in Honam Plain and Southern Part. 3. The significant positive correlation were obtained between the number of microorganisms and soil chemical properties, available phosphorous, $K^+$, $Mg^{++}$, T-C and soil pH. 4. The number of soil microorganism was in the order of Clay loamy soil > Clayey soil > Loamy soil > Sandy loamy soil.

  • PDF

Competitve Interactions of Cadmium with Magnesium in Three Different Soil Constituents (3개의 다른 토양에서의 카드늄과 마그네시움의 경쟁적 상호작용)

  • Doug-Young Chung
    • Journal of Korea Soil Environment Society
    • /
    • v.1 no.1
    • /
    • pp.81-88
    • /
    • 1996
  • To study the Cd adsorption in the presence of competing ions in soil-solution interphase, three soil samples from the Bt horizon were taken and analyzed for their physical and chemical properties. Adsorption of ethylene glycol monoethyl ether(EGME) and N, were determined to establish the specific surface area of the soils. We attempted to establish a qeneralizing competitive sorption isotherms for soils of entirely different composition of the solid phase, resulting in the routine use as a guidelines for the fate of reactive solute in soil profiles. Many physicochemical factors including competitive adsorption bettween solutes will affect the general adsorption phenomena as shown in a single not only on the soil:solution ratio used, but also on the surface areas of its respective soil samples. This phenomenon was attributed to competition Cd for sorption sites with Mg by different soil constituents. These adsorption isotherms are able to use as examples to demonstrate that this phenomenon can complicate the development of a standardized batch adsorption procedure as well as interpreting fate and adsorption of toxic inorganic compounds.

  • PDF