DOI QR코드

DOI QR Code

Relations between Soil Physicochemical Properties and Ginger Growth

토양의 물리.화학적 성질과 생강 생육과의 관계

  • 김동진 (전북대학교 대학원 농화학과) ;
  • 안병구 (전라북도농업기술원 기후변화대응과) ;
  • 이진호 (전북대학교 생물환경화학과)
  • Received : 2013.06.07
  • Accepted : 2013.06.25
  • Published : 2013.06.30

Abstract

Root-rot disease is a serious problem in ginger cultivation fields and it reduces the quality and productivity of ginger. This study was conducted to investigate the effects of different soil physical and chemical properties on the changes of ginger growth. As comparing the selected soil chemical properties after harvesting the ginger plants with those before planting them, the contents of total nitrogen and exchangeable $Mg^{2+}$ increased, whereas electrical conductivity (EC) and exchangeable $K^+$ content decreased. Potassium (K) concentrations in ginger plant were markedly higher in both its shoot and root parts ranging from 63.9 to $72.3g\;kg^{-1}$ and from 27.6 to $37.3g\;kg^{-1}$, respectively, which might be related to the decrease of exchangeable $K^+$ content in soils. Incidence rate of ginger root-rot disease in the plots ranges between 26.7% and 88.1%. It was higher in low elevation plots with clay loam soils than in high elevation plots. In addition, the incidence of the disease increased as affected by high temperature and humid condition during the growth and maturity stages of ginger. Therefore, soil texture, field slop, and drainage system as well as chemical properties should be considered to cultivate ginger plant.

생강 재배지 토양의 물리 화학적 특성 변화, 생강의 양분 흡수 관계, 생강의 생육 변화를 조사하였다. 시험 전 토양과 생강 수확 후 토양 특성을 비교하면, 시험 전 토양의 전질소 함량은 $0.04{\sim}0.13g\;kg^{-1}$, 치환성 K는 $1.88{\sim}2.80cmol_c\;kg^{-1}$, 치환성 Mg는 $0.41{\sim}0.55cmol_c\;kg^{-1}$, 수확 후 토양의 전질소 함량은 $0.31{\sim}0.95g\;kg^{-1}$, 치환성 K는 $0.47{\sim}1.37cmol_c\;kg^{-1}$, 치환성 Mg는 $1.07{\sim}1.97cmol_c\;kg^{-1}$로서 전질소 함량과 치환성 Mg의 함량은 증가하였고, 치환성 K의 함량은 감소하였다. 식물 양분 중 K, Ca, Zn, Cu의 흡수량이 지상부에서, 망간의 흡수량은 지하부에서 높은 함량을 보였으며, K의 흡수량은 지상부에서 $63.9{\sim}72.3g\;kg^{-1}$, 지하부에서 $27.6{\sim}37.3g\;kg^{-1}$로서 특히 높은 함량을 보였다. 생강 중 K의 높은 흡수량으로 인하여 토양 중 치환성 K의 함량이 수확 후 감소한 것으로 보인다. 생강의 뿌리썩음병은 저지대 및 식양토에서 높은 병발생률을 보였는데, 저지대로의 수분이동과 저지대의 배수 취약성이 병발생을 증가시키고, 토양수분 보유력이 높은 식양토 또한 병발생 증가에 영향을 준 것으로 생각된다. 뿌리썩음병 발생률은 낮게는 26.7%에서, 높게는 88.1%로 나타났는데, 생강 성숙기인 8월과 9월의 고온다습한 기후 조건도 높은 뿌리썩음병 발생의 원인으로 보인다. 생강 뿌리썩음병은 토양의 토성 및 지형 조건에 따른 토양수분의 증가, 고온다습한 기후 조건 등에 따라 발생률이 증가되는 것으로 판단된다. 따라서, 생강 재배지 선정시 지대의 경사, 토성, 배수 system 등이 고려되어야 할 것이다.

Keywords

References

  1. Agassi, M., D. Bloem, and M. Ben-Hur. 1994. Effect of drop energy and soil and water chemistry on infiltration and erosion. Water Resour. Res. 30(4): 1187-1193. https://doi.org/10.1029/93WR02880
  2. Ahn, B. K., K. C. Kim, D. H. Kim, and J. H. Lee. 2011. Effects of soil water potential on the moisture injury of Rubus coreanus Miq. and soil properties. Korean J. Soil Sci. Fert. 44(2): 168-175.
  3. Cho, J. H., S. M. Oh, S. P. Lee, and S. D. Bea. 1996. Effects of irrigation time on growth and yield of Dioscorea batatas DECNE. Korean J. Medicinal Crop Sci. 4(3): 205-211.
  4. Dick, R. P. 1992. A review : long-term effects of agricultural systems on soil biochemical and microbial parameters. Agric. Ecosyst. Environ. 40: 25-36. https://doi.org/10.1016/0167-8809(92)90081-L
  5. Dohroo, N. P. 2005. Disease of ginger, p. 305-340. In: Ravindran, P.N. and K. Nirmal Babu. Ginger: The Genus Zingiber. CRC Press, Boca Raton, FL, USA.
  6. Elliott, E. T. 1994. The potential use of soil biotic activity as an indicator of productivity, sustainability and pollution, p. 250-256. In: Pankhurst, C. E., B. M. Doube, V. V. S. R. Gupta, and P. R. Grace (Eds.). Soil biota: Management in Sustainable Farming Systems. CSIRO, Melbourne, Australia.
  7. Gee, G. W. and J. W. Bauder. 1986. Particle size analysis, p. 383-411. In: Klute, A. Method of soil analysis part I. (2nd ed.). America Society of Agronomy, Madison, WI, USA.
  8. Kandiannan, K., Utpala Parthasarathy, K. S. Krishnamurthy, C. K. Thankamani, V. Srinivasan. 2009. Modeling individual leaf area of ginger (Zingiber officinale Roscoe) using leaf length and width. Sci. Hort. 120: 532-537. https://doi.org/10.1016/j.scienta.2008.11.037
  9. KFDA. 2012. Standards and specifications of Food. Korea Food and Drug Administration, Korea.
  10. Kim, C. H., K. D. Hahn, and K. S. Park. 1996. Survey of rhizome rot incidence of ginger in major production areas in Korea. Korean J. Plant Pathol. 12(3): 336-344.
  11. Kim, C. H., S. S. Yang, and D. K. Hahn. 1997. Ecology of ginger rhizome rot development caused by Pythium myriotylum. Korean J. Plant Pathol. 13: 184-190.
  12. Kim, C. H. 2004. Review of researches on rhizome rot of ginger and future tasks for its management in Korea. Res. Plant Dis. 10(2): 87-93. https://doi.org/10.5423/RPD.2004.10.2.087
  13. Kim, J. K, M. S. Kim, B. H. Bak, and D. Y. Yang. 2007. The effects of mud content, slope angle, and soil water changes on interrill erosion using by single-sized multi-drop rainfall simulator. J. Korean Geomorphological Association 14(3): 115-121.
  14. KMA. 2012.Observational data : past data. http://www.kma.go.kr/weather/observation/past_table.jsp.
  15. Lee, M. T., C. J. Asher, and A. W. Whilley. 1981. Nitrogen nutrition of ginger effect of nitrogen supply on growth and development. Field Crops Res. 4: 55-68. https://doi.org/10.1016/0378-4290(81)90054-X
  16. Lee, W. H. and D. K. Lee. 1998. Ecology of rhizome rot incidence of ginger and relation of soil texture, chemistry and biology. Korean J. Environ. Agri. 17(1): 1-4.
  17. Lee, W. H., S. S. Cheong, and I. Y. So. 1990. Properties of suppressive and conducive soils to ginger rhizome rot. Korean J. Plant Pathol. 6(3): 338-342.
  18. MAF. 2006. Agricultural and forestry statistical yearbook. Ministry of Agriculture and Forestry, Korea.
  19. MFAFF. 2012. Food, agriculture, forestry and fisheries statistical yearbook. Ministry for Food, Agriculture, Forestry and Fisheries, Korea.
  20. NAAS. 2010. Fertilization standard on crops. National Academy of Agricultural Science, Rural Development Administration, Korea.
  21. NAAS. 2010. Method of soil and plant analysis. National Academy of Agricultural Science, Rural Development Administration, Korea.
  22. Pegg, K. and G. Stirling. 2010. Ginger, p. 143-147. In: Persley, D., T. Cooke, and S. House (Eds.). Diseases of vegetable crops in Australia. CSIRO Publishing, Collingwood, Australia.
  23. Shin, J. H., B. D. Yun, H. J. Kim, S. J. Kim, and D. Y. Chung. 2012. Soil environment and soil-borne plant pathogen causing root rot disease of Ginseng. Korean J. Soil Sci. Fert. 45(3): 370-376. https://doi.org/10.7745/KJSSF.2012.45.3.370
  24. Shinsu, T. 1978. Ecology and control of rhizome rot of ginger. Plant Prot. 32: 467-470.
  25. Shinsu, T. 1984. Rhizome rot of ginger and its control. Plant Prot. 38: 233-236.
  26. Stirling, A. M. 2004. The Causes of poor establishment of ginger(Zingiber officinale) in Queensland, Australia. Aust. Plant Path. 38: 453-460.
  27. Stirling, G. R., U. Turaganivalu, A. M. Stirling, M. F. Lomavatu, and M. K. Smith. 2009. Rhizome rot of ginger (Zingiber officinale) caused by Pythium myriotylum in Fiji and Australia. Aust. Plant Path. 38: 453-460. https://doi.org/10.1071/AP09023
  28. Yang, K. D, H. M. Kim, W. H. Lee, and I. Y. So. 1988. Studies of rhizome rot of ginger caused by Fusarium oxysporum f. sp. zingiberi and Pythium zingiberum. Korean J. Plant Pathol. 4: 271-277.
  29. Yang, W., Q. Xu, H. X. Liu, Y. P. Wang, Y. M. Wang, H. T. Yang, and J. H. Guo. 2012. Evaluation of biological control agents against Ralstonia wilt on ginger. Biol. Control 62: 144-151. https://doi.org/10.1016/j.biocontrol.2012.05.001