• Title/Summary/Keyword: Physicochemical characterization

Search Result 238, Processing Time 0.025 seconds

Formation and Characterization of Casein Phosphopeptide/Chitosan Oligosaccharide NanoComplex (케이신 포스포펩티드/키토올리고당 나노 복합체 형성과 특성 연구)

  • Baek, Yun-Seo;Ha, Ho-Kyung;Lee, Ji-Hong;Lee, Mee-Ryung;Lee, Won-Jae
    • Journal of Dairy Science and Biotechnology
    • /
    • v.36 no.3
    • /
    • pp.164-170
    • /
    • 2018
  • The objectives of this study were to manufacture casein phosphopeptide (CPP)/chitosan oligosaccharide (CSO) nanocomplexes and to investigate the impacts of manufacturing variables, such as CPP concentration and pH, on their morphological and physicochemical characteristics. Transmission electron microscopy (TEM) and particle size analysis were used to assess the morphological and physicochemical properties of the CPP/CSO nano-complexes, respectively. Based on the images obtained by TEM, the spherical shapes of the CPP/CSO nanocomplexes ranged from 50 to 150 nm. As the concentration of CPP was increased and the pH was decreased, the average particle size of the nanocomplexes significantly (p<0.05) increased. The CPP/CSO nanocomplexes had a highly uniform distribution with a polydispersity index value of less than 0.3. In addition, they had a negative surface charge with a zeta-potential value between -17 and -26 mV. The CPP/CSO nanocomplexes showed good stability during the freeze-drying process. In conclusion, CPP/CSO nanocomplexes were successfully manufactured, and the CPP concentration and pH were found to be key factors that affected their morphological and physicochemical properties.

Characterization of Hanwoo Bovine By-products by Means of Yield, Physicochemical and Nutritional Compositions

  • Seong, Pil Nam;Kang, Geun Ho;Park, Kuyng Mi;Cho, Soo Hyun;Kang, Sun Moon;Park, Beom Young;Moon, Sung Sil;Ba, Hoa Van
    • Food Science of Animal Resources
    • /
    • v.34 no.4
    • /
    • pp.434-447
    • /
    • 2014
  • Though the edible bovine by-products are widely used for human consumption in most countries worldwide but the scientific information regarding the nutritional quality of these by-products is scarce. In the present study, the basic information regarding the yields, physicochemical and nutritional compositions of edible Hanwoo bovine by-products was studied. Our results showed that the yields, physicochemical and nutritional composition widely varied between the by-products examined. The highest pH values were found in rumen, reticulum, omasum and reproductive organ. Heart, liver, kidney and spleen had the lowest CIE $L^*$ values and highest CIE $a^*$ values. Liver had the highest vitamin A, B2 and niacin contents whereas the highest B1 and B5 contents were found in kidney. The highest Ca content was found in rumen, reticulum, omasum, head and leg while the highest Mn and Fe contents were found in rumen, omasum and spleen, respectively. Liver had the highest Cu content. Total essential amino acids (EAA)/amino acids (AA) ratios ranged between the by-products from 38.37% to 47.41%. Total polyunsaturated fatty acids (PUFA) levels ranged between the by-products from 2.26% to 26.47%, and most by-products showed favorable PUFA/SFA ratios. It is concluded that most of by-products examined are good sources of essential nutrients and these data will be of great importance for promotion of consumption and utilization of beef by-products in future.

In vitro and in vivo pharmacokinetic characterization of LMT-28 as a novel small molecular interleukin-6 inhibitor

  • Ahn, Sung-Hoon;Heo, Tae-Hwe;Jun, Hyun-Sik;Choi, Yongseok
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.4
    • /
    • pp.670-677
    • /
    • 2020
  • Objective: Interleukin-6 (IL-6) is a T cell-derived B cell stimulating factor which plays an important role in inflammatory diseases. In this study, the pharmacokinetic properties of LMT-28 including physicochemical property, in vitro liver microsomal stability and an in vivo pharmacokinetic study using BALB/c mice were characterized. Methods: LMT-28 has been synthesized and is being developed as a novel therapeutic IL-6 inhibitor. The physicochemical properties and in vitro pharmacokinetic profiles such as liver microsomal stability and Madin-Darby canine kidney (MDCK) cell permeability assay were examined. For in vivo pharmacokinetic studies, pharmacokinetic parameters using BALB/c mice were calculated. Results: The logarithm of the partition coefficient value (LogP; 3.65) and the apparent permeability coefficient values (Papp; 9.7×10-6 cm/s) showed that LMT-28 possesses a moderate-high cell permeability property across MDCK cell monolayers. The plasma protein binding rate of LMT-28 was 92.4% and mostly bound to serum albumin. The metabolic half-life (t1/2) values of LMT-28 were 15.3 min for rat and 21.9 min for human at the concentration 1 μM. The area under the plasma drug concentration-time curve and Cmax after oral administration (5 mg/kg) of LMT-28 were 302±209 h·ng/mL and 137±100 ng/mL, respectively. Conclusion: These data suggest that LMT-28 may have good physicochemical and pharmacokinetic properties and may be a novel oral drug candidate as the first synthetic IL-6 inhibitor to ameliorate mammalian inflammation.

Preparation and Physicochemical Characterization of Sea Tangle Vinegar for Utilization as Vinegar-Based Salad Dressing (식초기반 샐러드 드레싱용 다시마 식초 제조 및 이화학적 특성)

  • Han, Areum;Surh, Jeonghee
    • Korean journal of food and cookery science
    • /
    • v.33 no.3
    • /
    • pp.300-306
    • /
    • 2017
  • Purpose: This study aimed to prepare sea tangle vinegar and test its applicability as a vinegar-based functional salad dressing in terms of physicochemical properties. Methods: Sea tangle vinegar was prepared by mixing sea tangle with sugar and vinegar and fermenting the mixture at room temperature for 3 months. The resulting sea tangle vinegar was examined for its physicochemical properties and antioxidant activity with brewed vinegar and persimmon vinegar as controls. Results: The sea tangle vinegar showed significantly higher viscosity than control vinegars, and shear thinning behavior that is typical for salad dressing containing polymers. In addition, storage modulus (G′) of sea tangle vinegar was relatively high in dynamic viscosity measurement while that of control vinegars remained negligible. Together with the high soluble solids content of sea tangle vinegar, rheological behavior indicates that sea tangle vinegar had soluble polysaccharides extracted from sea tangle, consequently leading to an increase in viscosity. Titratable acidity (TA) and pH were 2.52% and 3.58, respectively, which satisfies the TA and pH requirements for microbiological safety of a salad dressing. Absorbance at 285 nm and Folin Ciocalteu's reagent method revealed that sea tangle vinegar contained antioxidative phenolic compounds. Conclusion: This study demonstrates that sea tangle vinegar could be potentially developed as a vinegar-based functional salad dressing when combined with sensory evaluation in the future.

Characterization of Microbial Community Changes in Process Affected by Physicochemical Parameters During Liquid Fertilization of Swine Waste

  • Shin, Mi-Na;Kim, Jin-Won;Shim, Jaehong;Koo, Heung-Hoe;Lee, Jai-Young;Cho, Min;Oh, Byung-Taek
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.3
    • /
    • pp.173-181
    • /
    • 2013
  • Livestock wastes are considered as major environmental pollutants because they contain high concentration of organic materials. In 2001, The Environmental Department reported that stock farmers were increasing as 5.1%/year, which resulted in a gradual increase in livestock wastes generation. The direct disposal of livestock wastes create several environmental problems. Thus, several countries banned the disposal of livestock wastes in environment including aquatic systems. Recently, aeration-based liquid fertilization was considered as potential way for the disposal of livestock wastes. In this study, next generation sequencing (NGS) analysis was used to understand the microbial community changes during liquid fertilization of livestock wastes. Microbial community was compared with liquid fertilizer physicochemical analysis such as $BOD_5$, $COD_{Mn}$ pH, N (Nitrogen), P (Phosphorus), K (Potassium) etc. The physicochemical parameters and bacterial community results pave the way for producing effective livestock-based fertilizer. By comparing the physical characteristics of the manure with microbial community changes, it is possible to optimize the conditions for producing effective fertilizer.

Isolation and Identification of Wild Yeasts from Schizandra (Schizandra chinensis) for Wine Production and Its Characterization for Physicochemical and Sensory Evaluations (야생효모의 분리, 동정과 이를 이용한 오미자 발효주의 이화학 및 관능 특성의 비교)

  • Lee, Si-Hyung;Park, Hae-Kyung;Kim, Myung-Hee
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.39 no.12
    • /
    • pp.1860-1866
    • /
    • 2010
  • The purpose of this research was to characterize physicochemical properties and sensory evaluation of schizandra wines fermented by the yeasts, Sacchromyces cerevisiae SH8094 (S. cerevisiae SH8094) and Sacchromyces cerevisiae SH2855 (S. cerevisiae SH2855) isolated from schizandra fruits and stems and compare these results with the results from commercial activated yeast (Lalvin 1118) and a commercial schizandra wine. Three different schizandra wines fermented by S. cerevisiae SH8094, S. cerevisiae SH2855, and Lalvin 1118 showed similar results in pH and titratable acidity. On the other hand, the schizandra wines fermented by S. cerevisiae SH8094 and S. cerevisiae SH2855 showed high brix ($14^{\circ}$brix), low alcohol content (9%), and low yeasts count (4.1 log CFU/mL), compared with the schizandra wine fermented by Lalvin 1118. Both schizandra wines made with S. cerevisiae SH8094 and S. cerevisiae SH2855 showed higher scores in swallowing and overall acceptability than the schizandra wine made with Lalvin 1118. When compared with a commercial schizandra wine, the schizandra wine fermented with S. cerevisiae SH8094 showed better qualities in aroma ($6.65{\pm}1.47$), color ($7.53{\pm}1.14$), and overall acceptability ($6.76{\pm}1.03$). In conclusion, S. cerevisiae SH8094 which was isolated from schizandra fruits and stems has a high potential in schizandra wine fermentation.

A Study of Physicochemical and Mineralogical Properties of Heavy Metal Contaminated-Soil Particles from the Kangwon and Donghae Mines (강원광산과 동해광산주변 중금속 함유 토양입자의 이화학적·광물학적 특성연구)

  • Lee, Choong Hyun;Kim, YoungJae;Lee, Seon Yong;Park, Chan Oh;Sung, Yoo Hyun;Lee, Jai-Young;Choi, Ui Kyu;Lee, Young Jae
    • Journal of the Mineralogical Society of Korea
    • /
    • v.26 no.3
    • /
    • pp.197-207
    • /
    • 2013
  • Soil samples collected at the Kangwon and Donghae mines were investigated for the characterization of heavy metals using physicochemical and mineralogical properties. Arsenic (As) concentrations of soil samples sieved above 18 mesh and under 325 mesh at the Kangwon mine are 250.5 to 445.7 ppm, respectively. For soil samples sieved above 18 mesh at the Donghae mine, the concentrations of As, Pb, and Zn are 70.4, 1,055, and 781.9, while 117.7 ppm for As, 2,295 ppm for Pb, and 1,346 ppm for Zn are shown for the samples sieved under 325 mesh. XRD and SEM data indicated that the samples from the Kangwon mine included quartz, mica, albite, chlorite, magnetite, and amphibole while those from the Donghae mine contained quartz, mica, kaolinite, chlorite, amphibole, and rutile. SEM-EDS showed that magnetite found in the samples at the Kangwon mine was positively correlated with arsenic concentrations whereas ilmenite in the samples from the Donghae mine contained only small amount of As. Our results suggest that physicochemical and mineralogical characterization plays an important role in optimizing recovery treatments of soils contaminated in mine development areas.

Recent advances in the characterization and the treatment methods of effluent organic matter

  • Ray, Schindra Kumar;Truong, Hai Bang;Arshad, Zeshan;Shin, Hyun Sang;Hur, Jin
    • Membrane and Water Treatment
    • /
    • v.11 no.4
    • /
    • pp.257-274
    • /
    • 2020
  • There are many previous review articles are available to summarize either the characterization methods of effluent organic matter (EfOM) or the individual control treatment options. However, there has been no attempt made to compare in parallel the physicochemical treatment options that target the removal of EfOM from biological treatments. This review deals with the recent progress on the characterization of EfOM and the novel technologies developed for EfOM treatment. Based on the publications after 2010, the advantages and the limitations of several popularly used analytical tools are discussed for EfOM characterization, which include UV-visible and fluorescence spectroscopy, Fourier transform infrared spectroscopy (FTIR), size exclusion chromatography (SEC), and Fourier transform-ion cyclotron resonance-mass spectrometry (FT-ICR-MS). It is a recent trend to combine an SEC system with various types of detectors, because it can successfully track the chemical/functional composition of EfOM, which varies across a continuum of different molecular sizes. FT-ICR-MS is the most powerful tool to detect EfOM at molecular levels. However, it is noted that this method has rarely been utilized to understand the changes of EfOM in pre-treatment or post-treatment systems. Although membrane filtration is still the preferred method to treat EfOM before its discharge due to its high separation selectivity, the minimum requirements for additional chemicals, the ease of scaling up, and the continuous operation, recent advances in ion exchange and advanced oxidation processes are greatly noteworthy. Recent progress in the non-membrane technologies, which are based on novel materials, are expected to enhance the removal efficiency of EfOM and even make it feasible to selectively remove undesirable fractions/compounds from bulk EfOM.

Physicochemical Properties and Sugar-Snap Cookie Making Potentialities of Soft Wheat Cultivars and Lines (Triticum aestivum L. em Thell.) (연질밀(Triticum aestivum L. em Thell.)의 이화학적 특성과 sugar-snap cookie의 제조적성)

  • Lee, Yong-Suk;Kim, Jong-Goon;Won, Joon-Hyung;Chang, Hak-Gil
    • Korean Journal of Food Science and Technology
    • /
    • v.34 no.5
    • /
    • pp.846-855
    • /
    • 2002
  • Several soft white spring and winter wheat cultivars were evaluated by analyzing physicochemical properties such as Single Kernel Characterization System (SKCS), milling properties, Rapid Visco-Analyzer (RVA), mixograph pattern, and sugar-snap cookie-making potentialities. Results of SKCS revealed kernel hardness had a positive correlation coefficient with test weight $(r=0.497^{*})$ and near-infrared reflectance (NIR) hardness $(r=0.495^{*})$. SKCS kernel weight had a significantly high correlation of $r=0.942^{**}$ with SKCS kernel size. The test weight had significantly high correlations with straight-grade flour yield $(r=0.720^{**})$, break flour yield $(r=0.490^{*})$, flour ash content $(r=-0.781^{**})$, and milling score $(r=0.838^{**})$. The average RVA peak viscosity of the soft white winter wheat was higher (195.1 unit) than the soft white winter wheat varieties (135.7 unit). A correlation was found between RVA peak viscosity and swelling volume. Significant correlation coefficients were obtained among cookie properties, milling properties, protein content, and mixograph absorption. The cookie top grain score had a correlation coefficient of $r=0.447^{*}$ with swelling volume.

Xenon-129 NMR Method for the Study of Heterogeneous Catalysts (크세논-129 핵자기 공명 분광법을 이용한 불균일계 촉매의 연구)

  • Ryoo, Ryong
    • Applied Chemistry for Engineering
    • /
    • v.2 no.1
    • /
    • pp.1-11
    • /
    • 1991
  • Xenon-129 NMR technique has been developed since 1980 as a new method for the characterization of microporous materials such as zeolites, activated carbons and alumina by using chemical shift and linewidth variations in $^{129}Xe$ NMR of adsorbed xenon gas. This NMR technique has been known to be very effective to probe the locational and the chemical changes of the supported metallic species as well as the physicochemical change of the support material. Recently, this method has been successfully applied for the characterization of amorphous materials such as activated carbons, silica and alumina. Basic principles, experimental techniques and recent applications of the $^{129}Xe$ NMR method for the study of heterogeneous catalysts are introduced in this paper.

  • PDF