• Title/Summary/Keyword: Physico-mechanical properties

Search Result 65, Processing Time 0.027 seconds

A Study on Characteristics of Jointed Rock Masses and Thermo-hydro-mechanical Behavior of Rock Mass under High Temperature (방사성 폐기물 저장을 위한 불연속 암반의 특성 및 고온하에서의 암반의 수리열역학적 상호작용에 관한 연구)

  • 이희근;김영근;이희석
    • Tunnel and Underground Space
    • /
    • v.8 no.3
    • /
    • pp.184-193
    • /
    • 1998
  • In order to dispose radioactive wastes safely, it is needed to understand the mechanical, thermal, fluid behavior of rockmass and physico-chemical interactions between rockmass and water. Also, the knowledge about mechanical and hydraulic properties of rocks is required to predict and to model many conditions of geological structure, underground in-situ stress, folding, hot water interaction, intrusion of magma, plate tectonics etc. This study is based on researches about rock mechanics issues associated with a waste disposal in deep rockmass. This paper includes the mechanical and hydraulic behavior of rocks in varying temperature conditions, thermo-hydro-mechanical coupling analysis in rock mass and deformation behavior of discontinuous rocks. The mechanical properties were measured with Interaken rock mechanics testing systems and hydraulic properties were measured with transient pulse permeability measuring systems. In all results, rock properties were sensitive to temperature variation.

  • PDF

Characterization and antimicrobial efficacy of Portland cement impregnated with silver nanoparticles

  • Nam, Ki Young
    • The Journal of Advanced Prosthodontics
    • /
    • v.9 no.3
    • /
    • pp.217-223
    • /
    • 2017
  • PURPOSE. This study investigated the effects of silver nanoparticle (SN) loading into hydraulic calcium silicate-based Portland cement on its mechanical, antibacterial behavior and biocompatibility as a novel dental bone substitute. MATERIALS AND METHODS. Chemically reduced colloidal SN were combined with Portland cement (PC) by the concentrations of 0 (control), 1.0, 3.0, and 5.0 wt%. The physico-mechanical properties of silver-Portland cement nanocomposites (SPNC) were investigated through X-ray diffraction (XRD), setting time, compressive strength, solubility, and silver ion elution. Antimicrobial properties of SPNC were tested by agar diffusion against Streptococcus mutans and Streptococcus sobrinus. Cytotoxic evaluation for human gingival fibroblast (HGF) was performed by MTS assay. RESULTS. XRD certified that SN was successfully impregnated in PC. SPNC at above 3.0 wt% significantly reduced both initial and final setting times compared to control PC. No statistical differences of the compressive strength values were detected after SN loadings, and solubility rates of SPNC were below 3.0%, which are acceptable by ADA guidelines. Ag ion elutions from SPNC were confirmed with dose-dependence on the concentrations of SN added. SPNC of 5.0 wt% inhibited the growth of Streptococci, whereas no antimicrobial activity was shown in control PC. SPNC revealed no cytotoxic effects to HGF following ISO 10993 (cell viability > 70%). CONCLUSION. Addition of SN promoted the antibacterial activity and favored the bio-mechanical properties of PC; thus, SPNC could be a candidate for the futuristic dental biomaterial. For clinical warrant, further studies including the inhibitory mechanism, in vivo and long-term researches are still required.

Investigation of the effect of internal curing as a novel method for improvement of post-fire properties of high-performance concrete

  • Moein Mousavi;Habib Akbarzadeh Bengar
    • Computers and Concrete
    • /
    • v.33 no.3
    • /
    • pp.309-324
    • /
    • 2024
  • Internal curing, a widely used method for mitigating early-age shrinkage in concrete, also offers notable advantages for concrete durability. This paper explores the potential of internal curing by partial replacement of sand with fine lightweight aggregate for enhancing the behavior of high-performance concrete at elevated temperatures. Such a technique may prove economical and safe for the construction of skyscrapers, where explosive spalling of high-performance concrete in fire is a potential hazard. To reach this aim, the physico-mechanical features of internally cured high-strength concrete specimens, including mass loss, compressive strength, strain at peak stress, modulus of elasticity, stress-strain curve, toughness, and flexural strength, were investigated under different temperature exposures; and to predict some of these mechanical properties, a number of equations were proposed. Based on the experimental results, an advanced stress-strain model was proposed for internally cured high-performance concrete at different temperature levels, the results of which agreed well with the test data. It was observed that the replacement of 10% of sand with pre-wetted fine lightweight expanded clay aggregate (LECA) not only did not reduce the compressive strength at ambient temperature, but also prevented explosive spalling and could retain 20% of its ambient compressive strength after heating up to 800℃. It was then concluded that internal curing is an excellent method to enhance the performance of high-strength concrete at elevated temperatures.

The Changes of Vulcanization and Physico-Mechanical Properties of NR/BR Blend with the Content of Sulfur and Accelerator (황 및 가황 촉진제의 함량에 따른 NR/BR 블렌드의 가황과 물리적·기계적 특성의 변화)

  • Kim, Wan-Young;Lee, Dai-Soo;Kim, Youn-Sop;Kim, Hyung-Soon;Nah, Chang-Woon
    • Applied Chemistry for Engineering
    • /
    • v.2 no.4
    • /
    • pp.356-362
    • /
    • 1991
  • The physico-mechanical properties of NR/BR blend were measured, and the results were interpreted in terms of the crosslink density with cure system. The cure rate, maximum torque and crosslink density increase with the content and ratio of curative for cure system. Hardness, 300 % tensile modulus, rebound and wear resistance increase with crosslink density of the vulcanizate but heat build-up and tan $\delta$ at $60^{\circ}C$ decrease. It is expected that semi-EV(efficient vulcanization) cure system is appropriate for application in tire tread of truck/bus in which load bearing property is impotant.

  • PDF

Influence of heat treatment on the microstructure and the physical and mechanical properties of dental highly translucent zirconia

  • Dimitriadis, Konstantinos;Sfikas, Athanasios Konstantinou;Kamnis, Spyros;Tsolka, Pepie;Agathopoulos, Simeon
    • The Journal of Advanced Prosthodontics
    • /
    • v.14 no.2
    • /
    • pp.96-107
    • /
    • 2022
  • PURPOSE. Microstructural and physico-mechanical characterization of highly translucent zirconia, prepared by milling technology (CAD-CAM) and repeated firing cycles, was the main aim of this in vitro study. MATERIALS AND METHODS. Two groups of samples of two commercial highly-translucent yttria-stabilized dental zirconia, VITA YZ-HTWhite (Group A) and Zolid HT + White (Group B), with dimensions according to the ISO 6872 "Dentistry - Ceramic materials", were prepared. The specimens of each group were divided into two subgroups. The specimens of the first subgroups (Group A1 and Group B1) were merely the sintered specimens. The specimens of the second subgroups (Group A2 and Group B2) were subjected to 4 heat treatment cycles. The microstructural features (microstructure, density, grain size, crystalline phases, and crystallite size) and four mechanical properties (flexural strength, modulus of elasticity, Vickers hardness, and fracture toughness) of the subgroups (i.e. before and after heat treatment) were compared. The statistical significance between the subgroups (A1/A2, and B1/B2) was evaluated by the t-test. In all tests, P values smaller than 5% were considered statistically significant. RESULTS. A homogenous microstructure, with no residual porosity and grains sized between 500 and 450 nm for group A and B, respectively, was observed. Crystalline yttria-stabilized tetragonal zirconia was exclusively registered in the X-ray diffractograms. The mechanical properties decreased after the heat treatment procedure, but the differences were not statistically significant. CONCLUSION. The produced zirconia ceramic materials can be safely (i.e., according to the ISO 6872) used in extensive fixed prosthetic restorations, such as substructure ceramics for three-unit prostheses involving the molar restoration and substructure ceramics for prostheses involving four or more units. Consequently, milling technology is an effective manufacturing technology for producing zirconia substructures for dental fixed all-ceramic prosthetic restorations.

Vibration analysis and optimization of functionally graded carbon nanotube reinforced doubly-curved shallow shells

  • Hammou, Zakia;Guezzen, Zakia;Zradni, Fatima Z.;Sereir, Zouaoui;Tounsi, Abdelouahed;Hammou, Yamna
    • Steel and Composite Structures
    • /
    • v.44 no.2
    • /
    • pp.155-169
    • /
    • 2022
  • In the present paper an analytical model was developed to study the non-linear vibrations of Functionally Graded Carbon Nanotube (FG-CNT) reinforced doubly-curved shallow shells using the Multiple Scales Method (MSM). The nonlinear partial differential equations of motion are based on the FGM shallow shell hypothesis, the non-linear geometric Von-Karman relationships, and the Galerkin method to reduce the partial differential equations associated with simply supported boundary conditions. The novelty of the present model is the simultaneous prediction of the natural frequencies and their mode shapes versus different curvatures (cylindrical, spherical, conical, and plate) and the different types of FG-CNTs. In addition to combining the vibration analysis with optimization algorithms based on the genetic algorithm, a design optimization methode was developed to maximize the natural frequencies. By considering the expression of the non-dimensional frequency as an objective optimization function, a genetic algorithm program was developed by valuing the mechanical properties, the geometric properties and the FG-CNT configuration of shallow double curvature shells. The results obtained show that the curvature, the volume fraction and the types of NTC distribution have considerable effects on the variation of the Dimensionless Fundamental Linear Frequency (DFLF). The frequency response of the shallow shells of the FG-CNTRC showed two types of nonlinear hardening and softening which are strongly influenced by the change in the fundamental vibration mode. In GA optimization, the mechanical properties and geometric properties in the transverse direction, the volume fraction, and types of distribution of CNTs have a considerable effect on the fundamental frequencies of shallow double-curvature shells. Where the difference between optimized and not optimized DFLF can reach 13.26%.

Physico-Mechanical Properties and Formaldehyde Abatement of Particleboard Mixed with Gingko Tree Leaves (은행나무 잎을 혼합하여 제조한 파티클보드의 물리.기계적 성질과 포름알데히드 저감효과)

  • Park, Sang-Bum
    • Journal of Korea Foresty Energy
    • /
    • v.25 no.2
    • /
    • pp.28-33
    • /
    • 2006
  • This study was conducted to find potentialities of the leaves of gingko tree (Gingko biloba L.) which has been planted as a roadside tree in Korea because of its resistance on air pollution, insect, fungi, etc. Various amounts of the leaves were mixed with wasted wood particles to manufacture particleboard. Their influences on physical and mechanical properties and the formaldehyde emission of PB were investigated. Physical and mechanical properties, such as density, modulus of rupture (MOR), and internal bond (IB) strength, of manufactured particleboard were not much different from those of control board. Formaldehyde emission values were decreased with increasing amount of leaves in PB prepared. Especially, particleboard made with 3 percent of leaves was decreased to $1.66mg/{\ell}$ in formaldehyde emission, which is about 40% lower emission than that of control. From these results, the leaves of gingko tree may be considered as a formaldehyde emission lowering additive in a functional PB manufacturing process.

  • PDF

Influence of Alkali and Silane Treatment on the Physico-Mechanical Properties of Grewia serrulata Fibres

  • JAIN, Bhupesh;MALLYA, Ravindra;NAYAK, Suhas Yeshwant;HECKADKA, Srinivas Shenoy;PRABHU, Shrinivasa;MAHESHA, G.T.;SANCHETI, Gaurav
    • Journal of the Korean Wood Science and Technology
    • /
    • v.50 no.5
    • /
    • pp.325-337
    • /
    • 2022
  • Grewia serrulata fibres were chemically treated with 3%, 6%, and 9% NaOH for the duration of 4 h. Additionally, the NaOH-treated fibres were also treated with 3 - (trimethoxysilyl) propyl methacrylate (silane). Properties such as density and tensile strength of the treated fibres were compared against the untreated fibres. The highest density was obtained in the case of 9% NaOH + silane treated fibres, which was 26.47% higher than untreated fibres, implying effective removal of hemicellulose. Likewise, the highest tensile strength was also obtained in the case of 9% NaOH + silane treated fibres. The increment observed in the tensile strength of the natural fibres was related to the removal of impurities, hemicellulose, and stress-raisers as well as deposition over the fibre surface that smoothed it. These observations were further validated by estimating changes in chemical constituents due to chemical treatment along with characterization techniques such as scanning electron microscopy and thermogravimetric analysis.

Effects of Electron Beam Irradiation on Tribological and Physico-chemical Properties of Polyoxymethylene (POM-C) copolymer

  • Rahman, Md. Shahinur;Yang, Jong-Keun;Shaislamov, Ulugbek;Lyakhov, Konstantin;Kim, Min-Seok;Lee, Heon-Ju
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.153-153
    • /
    • 2016
  • Polyoxymethylene copolymer (POM-C) is an attractive and widely used engineering thermoplastic across many industrial sectors owing to outstanding physical, mechanical, self-lubricating and chemical properties. In this research work, the POM-C blocks were irradiated with 1 MeV electron beam energy in five doses (100, 200, 300, 500 and 700 KGy) in vacuum condition at room temperature. The tribological and physico-chemical properties of electron beam irradiated POM-C blocks have been analyzed using Pin on disk tribometer, Raman spectroscopy, SEM-EDS, Optical microscopy, 3D Nano surface profiler system and Contact angle analyzer. Electron beam irradiation at a dose of 100 kGy resulted in a decrease of the friction coefficient and wear loss of POM-C block due to well suited cross-linking, carbonization, free radicals formation and energetic electrons-atoms collisions (physical interaction). It also shows lowest surface roughness and highest water contact angle among all unirradiated and irradiated POM-C blocks. The irradiation doses at 200, 300, 500 and 700 kGy resulted in increase of the friction coefficient as compared to unirradiated POM-C block due to severe chain scission, chemical and physical structural degradation. The electron beam irradiation transferred the wear of unirradiated POM-C block from the abrasive wear, adhesive wear and scraping to mild scraping for the 1 MeV, 100 kGy irradiated POM-C block which is concluded from SEM-EDS and Optical microscopic observations. The degree of improvement for tribological attribute relies on the electron beam irradiation condition (energy and dose rate).

  • PDF

Electro-conductive polymer by $\gamma$-ray irradiation ($\gamma$-선 조사방식에 의한 전도성 폴리머 제작 특성)

  • ;;;G.A. Mun;V.A. Kovtunets;Z.S. Nurkeeva;V.V. Khutoryanskiy
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.05a
    • /
    • pp.762-765
    • /
    • 2003
  • 에틸렌글리콜(ethyleneglycol)을 이용한 폴리비닐에테르(polyvinyl ether)와 같은 고분자물질을 활용하여 Co$^{30}$ 방사선원으로부터 ${\gamma}$선을 조사시켜, 고분자 물질의 성질을 변화시킴으로써 화학, 전기전자, 환경 및 기타 여러 가지 응용분야에 적용하여 이용할 수 있는 기술을 개발하였다. 이를 바탕으로 관련재료의 단량체(monomer)로부터 중합체(polymer)를 합성하여 water swelling을 시키는 과정에서 각종 (금속) 이온을 흡입-제거하는 방법의 환경복원기술, 흡입 금속이온을 표면에 밀집시켜 금속막을 형성하는 응용기술, 생체조직의 대용물질로 활용하는 의용공학 및 열감지특성(thermal sensitive property) 또는 pH 감지특성(pH sensitive property)을 이용하여 의용기술에 적용하는 polymer 응용기술 등의 폭넓은 활용을 위하여 그 일환으로 전도성 고분자 제조기술로의 활용가능성을 연구하였다.

  • PDF