• Title/Summary/Keyword: Physical-SoC

Search Result 517, Processing Time 0.03 seconds

Hybrid Multi-System-on-Chip Architecture as a Rapid Development Approach for a High-Flexibility System

  • Putra, Rachmad Vidya Wicaksana;Adiono, Trio
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.5 no.1
    • /
    • pp.55-62
    • /
    • 2016
  • In this paper, we propose a hybrid multi.system-on-chip (H-MSoC) architecture that provides a high-flexibility system in a rapid development time. The H-MSoC approach provides a flexible system-on-chip (SoC) architecture that is easy to configure for physical- and application-layer development. The physical- and application-layer aspects are dynamically designed and modified; hence, it is important to consider a design methodology that supports rapid SoC development. Physical layer development refers to intellectual property cores or other modular hardware (HW) development, while application layer development refers to user interface or application software (SW) development. H-MSoC is built from multi-SoC architectures in which each SoC is localized and specified based on its development focus, either physical or application (hybrid). Physical HW development SoC is referred to as physical-SoC (Phy-SoC) and application SW development SoC is referred to as application-SoC (App-SoC). Phy-SoC and App-SoC are connected to each other via Ethernet. Ethernet was chosen because of its flexibility, high speed, and easy configuration. For prototyping, we used a LEON3 SoC as the Phy-SoC and a ZYNQ-7000 SoC as the App-SoC. The proposed design was proven in real-time tests and achieved good performance.

Embedded ARM based SoC Implementation for 5.8GHz DSRC Communication Modem (임베디드 ARM 기반의 5.8GHz DSRC 통신모뎀에 대한 SOC 구현)

  • Kwak, Jae-Min;Shin, Dae-Kyo;Lim, Ki-Taek;Choi, Jong-Chan
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.11 s.353
    • /
    • pp.185-191
    • /
    • 2006
  • DSRC((Dedicated Short Range Communication) is dedicated short range communication for wireless communications between RSE(Road Side Equipment) and OBE(On-Board Unit) within vehicle moving high speed. In this paper, we implemented 5.8GHz DSRC modem according to Korea TTA(Telecommunication Technology Association) standard and investigated implementation results and design process for SoC(System on a Chip) embedding ARM CPU which control overall signal and process arithmetic work. The SoC is implemented by 0.11um design technology and 480pins EPBGA package. In the implemented SoC ($Jaguar^{TM}$), 5.8GHz DSRC PHY(Physical Layer) modem and MAC are designed and included. For CPU core ARM926EJ-S is embedded, and LCD controller, smart card controller, ethernet MAC, and memory controller are designed as main function.

Effects by Variation of Raw Materials on Physical Properties of Ni-Zn Ferrite (원료 변화에 따른 Ni-Zn Ferrite의 물리적 특성에 미치는 영향)

  • Koh, Jae-Gui
    • Korean Journal of Materials Research
    • /
    • v.16 no.9
    • /
    • pp.578-583
    • /
    • 2006
  • We studied the physical properties of Ni-Zn ferrites by adding different chemicals such as $SO_4$, Cl, and $NO_3$. Specimens were prepared by the coprecipitation method and sintered at temperatures $950^{\circ}C,\;1,150^{\circ}C,\;and\;1,350^{\circ}C$, respectively. X-ray diffractions showed a spinel structure and the optical microscopy revealed grain size of 0.3 to 0.6 ${\mu}m$. The optimum sintering temperature to obtain fine, sintered microstructure depended on the additive : Cl and $NO_3\;at\;950^{\circ}C\;and\;SO_4\;at\;1,150^{\circ}C$. According to particle size analysis, higher magnetic permeability and magnetization value were observed with Cl and $NO_3\;than\;SO_4$. As sintering temperature was raised from $950^{\circ}C$ to $1,350^{\circ}C$, the average grain diameter, initial permeability and the magnetic moment also increased.

Physical-Aware Approaches for Speeding Up Scan Shift Operations in SoCs

  • Lee, Taehee;Chang, Ik Joon;Lee, Chilgee;Yang, Joon-Sung
    • ETRI Journal
    • /
    • v.38 no.3
    • /
    • pp.479-486
    • /
    • 2016
  • System-on-chip (SoC) designs have a number of flip-flops; the more flip-flops an SoC has, the longer the associated scan test application time will be. A scan shift operation accounts for a significant portion of a scan test application time. This paper presents physical-aware approaches for speeding up scan shift operations in SoCs. To improve the speed of a scan shift operation, we propose a layout-aware flip-flop insertion and scan shift operation-aware physical implementation procedure. The proposed combined method of insertion and procedure effectively improves the speed of a scan shift operation. Static timing analyses of state-of-the-art SoC designs show that the proposed approaches help increase the speeds of scan shift operations by up to 4.1 times that reached under a conventional method. The faster scan shift operation speeds help to shorten scan test application times, thus reducing test costs.

METHOD FOR THE ANALYSIS OF TEMPORAL CHANGE OF PHYSICAL STRUCTURE IN THE INSTRUMENTATION AND CONTROL LIFE-CYCLE

  • Goring, Markus;Fay, Alexander
    • Nuclear Engineering and Technology
    • /
    • v.45 no.5
    • /
    • pp.653-664
    • /
    • 2013
  • The design of computer-based instrumentation and control (I&C) systems is determined by the allocation of I&C functions to I&C systems and components. Due to the characteristics of computer-based technology, component failures can negatively affect several I&C functions, so that the reliability proof of the I&C systems requires the accomplishment of I&C system design analyses throughout the I&C life-cycle. On one hand, this paper proposes the restructuring of the sequential IEC 61513 I&C life-cycle according to the V-model, so as to adequately integrate the concept of verification and validation. On the other hand, based on a metamodel for the modeling of I&C systems, this paper introduces a method for the modeling and analysis of the effects with respect to the superposition of failure combinations and event sequences on the I&C system design, i.e. the temporal change of physical structure is analyzed. In the first step, the method is concerned with the modeling of the I&C systems. In the second step, the method considers the analysis of temporal change of physical structure, which integrates the concepts of the diversity and defense-in-depth analysis, fault tree analysis, event tree analysis, and failure mode and effects analysis.

The Effect of Ultraviolet-C Radiation on Disinfection (Ultraviolet-C 조사의 살균 효과)

  • Choi, Houng-Sik;Choi, Kyu-Hwan;Park, So-Yeon
    • Physical Therapy Korea
    • /
    • v.9 no.3
    • /
    • pp.93-99
    • /
    • 2002
  • Traditionally, ultraviolet (UV) has been used for treating the pressure sore and skin wound. The effects of UVA and UVB radiation on disinfection have been reported. The purpose of this study was to examine the effectiveness of UVC radiation on disinfection of Escherichia coli, Staphylococcus aureus, Salmonella typhimurium in vitro. Three bacterium were radiated by UVC (250 nm, 20 seconds) and incubated at $37^{\circ}C$ for 24 hours at the agar culture medium. Kill rates of all three bacterium were 99.9%. UVC radiated on three kinds of bacterium for 30 or 60 seconds. Kill rates were 99.9% both 30 and 60 seconds. This data suggests that UV light at 250 nm could be a useful method to minimize infection and shorten healing time in pressure sore and skin wound condition.

  • PDF

The study of the change in the blood when acupuncture points are stimulated or when doing aerobic exercises (유산소운동과 경혈점 자극후 혈청내 변화에 대한 비교 연구)

  • Lee, Jung-Sook
    • Journal of Korean Physical Therapy Science
    • /
    • v.7 no.2
    • /
    • pp.629-639
    • /
    • 2000
  • The purpose of this study is to find out what effects aerobic exercises and acupuncture point stimuli have on the blood. For this purpose, we reviewed 10 papers on aerobic exercises and 10 papers on the stimuli to acupuncture points and compared the changes of HDL-C, seroenzyme GOT and GPT. The results showed that HDL-C increased significantly after aerobic exercises; more so than before as stated in the papers on aerobic exercises. On the other hand, HDL-C decreased significantly after acupuncture point stimuli; more so than before as stated in the papers on the stimuli to acupuncture points. Seroenzyme GOT increased more significantly after aerobic exercises than shown before in the papers on aerobic exercises. However, there was a more significant decrease after the stimulus than shown before in the papers on acupuncture points stimuli. Seroenzyme GPT increased more significantly after aerobic exercises than shown before in the papers on aerobic exercises. There were no significant differences before and after on, the acupuncture points stimuli, according to those papers. Therefore, as HDL-C increased significantly when doing aerobic exercises, aerobic exercises prove to be a more effective treatment method than stimuli to the acupuncture points for patients with hyperlipidemia. However, from the facts that seroenzyme GOT and GPT increased significantly after aerobic exercises, we find that aerobic exercises may be more of a burden on the tissues of the liver, skeletal muscles, stomach, etc. than the stimuli to acupuncture points.

  • PDF

Specific Surface Area and Pore Structure Changes of Calcined Lime with Calcination and Sulfation Reaction (소성과 황화반응에 따른 생석회의 비표면적 및 기공구조 변화)

  • 강순국;정명규
    • Journal of environmental and Sanitary engineering
    • /
    • v.13 no.3
    • /
    • pp.19-29
    • /
    • 1998
  • The calcination reactivity of limestone and physical property changes of calcined lime were investigated with a temperature($720~1000^{\circ}C$ under atmospheric gas($N_2$, $CO_2$) conditions. The mechanisms of mass transport in a lime matrix were represented by the evaporation and condensation (${\gamma}=1.7$) at $1000^{\circ}C$ and the volume diffusion (${\gamma}=2.7$) at $800^{\circ}C$, which was obtained by the specific surface area of calcined lime with sintering conditions. Also, the effect of physical property on the reactivity of sulfation reaction was determined by the changes of pore size with $lime-SO_2$ reaction in this work. The initial sulfation rate of calcined lime increased with increasing temperature, whereas the capture capacity of $SO_2$ exhibited a maximum value at $900^{\circ}C$. The pore volume of sulfated lime was decreased with increasing sulfation time, but the major pores shifted to the distribution of larger size at a temperature of $850{\;}~{\;}1000^{\circ}C$. The mean pore size of sulfated lime based on pore volume decreased gradually at $1000^{\circ}C$; however, it increased with sulfation time up to 40 min and rapidly decreased thereafter.

  • PDF

The Study of Vertebral Palpation (척추부 촉진에 관한 연구)

  • Park, Youn-Ki
    • The Journal of Korean Academy of Orthopedic Manual Physical Therapy
    • /
    • v.16 no.1
    • /
    • pp.57-63
    • /
    • 2010
  • The palpation of spinous process and transverse process of vertebra are important part of the assesment and treatment from Orthopedic manual therapy. But the palpation area is descriptive differently each of literatures. So we generally got these outcomes. : There are C2, C3, C4 and C6 process as a bony landmarks and these are important part of establish the precise location of pain appears from cervical spine. Even though C7 process regard a prominent part, it is hard to distinguish C6 and process of T1. Thru that differentiation, grab the patient's forehead and try them cervical and hyper-extension check any movement of process or put on the fingers on C7 preocess and check the movement. The palpation of thoracic spine process is the land mark which determines general level orientation in the spine easily, there are T2, T7 spinous process. However, It is depends on how do you test the patient's arm when you palpate it and it can effect on spinous process. The transverse process of C1 is the only spot for palpation in cervical spine, and T1-3, T12 transverse process can palpate it when it stands on the process. The end of T4-6, T11 is placed on middle on vertebra of transverse process and transverse process. T7-9, T10 transverse process is place on same position as spinous process which is upper part of the spine.

  • PDF