• Title/Summary/Keyword: Physical work capacity

Search Result 98, Processing Time 0.023 seconds

A Study of Consequence Analysis of Physical Explosion Damage in CO2 Storage Tank (CO2 임시 저장 탱크에서의 물리적 폭발에 따른 피해영향 고찰)

  • Seo, Doo-Hyoun;Jang, Kap-Man;Lee, Jin-Han;Rhie, Kwang-Won
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.2
    • /
    • pp.12-19
    • /
    • 2015
  • $CO_2$ is non-flammable, non-toxic gas and not cause of chemical explosion. However, various impurities and some oxides can be included in the captured $CO_2$ inevitably. While the $CO_2$ gas was temporarily stored, the pressure in a storage tank would be reached above 100bar. Therefore, the tank could occur a physical explosion due to the corrosion of vessel or uncertainty. Evaluating the intensity of explosion can be calculated by the TNT equivalent method generally used. To describe the physical explosion, it is assumed that the capacity of a $CO_2$ temporary container is about 100 tons. In this work, physical explosion damage in a $CO_2$ storage tank is estimated by using the Hopkinson's scaling law and the injury effect of human body caused by the explosion is assessed by the probit model.

The Analysis of planning methode and case study for Model 'Climate Change Adaptation City' (기후변화 적응도시 모델개발을 위한 계획기법 및 사례 분석)

  • Kim, Jongkon
    • KIEAE Journal
    • /
    • v.12 no.4
    • /
    • pp.13-19
    • /
    • 2012
  • The Earth's surface temperature still continues to rise, and extreme weather phenomena such as heat waves, drought, and precipitation have been repeated every year. It is reported that international communities attribute the main cause of the Earth's surface temperature rise to the excessive use of the fossil energy. Recently, the damage caused by climate change is getting worse, and the place where we live is suffering the most. Cities have been continuously growing not only meeting the basic functions of human habitation, work and leisure but also being places for various economic and social activities. But Cities, the victims of climate change, have grown only considering human needs and convenience rather than predicting their physical and ecological systems(Albedo effects, urban microclimate, resources and energy of the circulatory system, etc). In other words, the cities offer the cause of the problems of climate change, and even worsen the extreme weather phenomena without coping with them. Therefore, it is urgent priorities to protect the climate, to prevent the causes of the extreme weather phenomena and to enhance the adaptive capacity for the worse weather events. This study is to derive the concept for adapting to these climate changes which can make cities escape from exposure to these climate change impacts and make themselves safer places to live. And it analyzes some European cities and present developing models to implement planning methods. In this study, the concept of the climate adaptive cities will be suggested to prepare the adaptation measures for urban planners, and climate change adaptation models will be presented by analyzing some preliminary cases.

Effect of Density Variation of High Tenacity PET Interlace Yarn on the Physical Properties of Pack Style Shock Energy Absorber (고강력 PET Interlace Yarn 밀도변화가 Pack Style Shock Energy Absorber의 물성에 미치는 영향)

  • Cho, Jin Won;Kwon, Sang Jun;Choe, Jong Deok;Kim, Sang Tae;Ji, Byung Chul;Yang, Seong Baek;Yeum, Jeong Hyun
    • Textile Coloration and Finishing
    • /
    • v.27 no.2
    • /
    • pp.132-141
    • /
    • 2015
  • Fall-arrest systems(maximum arrest force and allowable free-fall) have been widely applied to provide a safe stop during fall incidents for various industrial activities. Fabric structure affects on the mechanical properties of shock energy absorber. The object of this study is to perform the basic research for the evaluation of the capacity of fall arrest energy absorber in relation to the different interlace yarn density. In this work, pack style energy absorber was prepared by weaving 10 types(Interlace yarn density used high tenacity PET 1000D : 60, 59, 58, 57, 56, 55, 54, 53, 52, 51). The paper presents the results of theoretical investigations of the performance of adjustable absorber during fall arrest. Dynamic load tests based on the EU fall protection equipment standard(CE : EN355:2002) were conducted. Results showed that the maximum arrest force by dynamic load test of energy absorber was satisfied with global standard(below 6,000N). Also, Maximum allowable free-fall of energy absorber showed below 1.75m.

Study on the characteristic of liner and cover material by accelerating agent type (급결제 종류에 따른 광산 차수재의 특성 연구)

  • Cho, Yong-Kwang;Nam, Seong-Young;Lee, Yong-Mu;Kim, Chun-Sik;Seo, Shin-Seok;Jo, Sung-Hyun;Lee, Hyoung-Woo;Ahn, Ji-Whan
    • Journal of Environmental Science International
    • /
    • v.27 no.2
    • /
    • pp.75-81
    • /
    • 2018
  • At present research on mining backfill materials is being carried out to prevent ground subsidence and breaking by underground cavern of exhausted mines. However, backfill materials can cause secondary environmental issues such as ground pollution. To solve these issues, liner and cover materials are constructed before backfill materials constructed, to inhibit toxic substances form moving to the surroundings. Liner and cover materials, however, should have an accelerating performance after construction and when the accelerating performance is degraded, the work efficiency can be lowered, and the construction cost can be increased, by many rebound content. Therefore, this study develops mining liner and cover materials, and evaluates their accelerating performance and physical properties of liner and cover materials by types and content of accelerating agent. In case of aluminate accelerating agent, it is mixed with more than 5% of liner and cover materials(binder/ratio); thus an accelerating performance satisfying Korean Industrial Standards(KS) occurs, and in case of alkali-free accelerating agent, when it is mixed with more than 7%(binder/ratio), accelerating performance satisfying KS occurs. The more the accelerating agent capacity increases, the more compressive strength decreases. In addition, it is confirmed that compressive strength of aluminate accelerating agent is more degraded than compressive strength of the alkali-free accelerating agent. It is also confirmed that drying shrinkage stability of the alkali-free accelerating agent is better than the drying shrinkage stability of the aluminate accelerating agent.

Biosorption of Lead(II) by Arthrobacter sp. 25: Process Optimization and Mechanism

  • Jin, Yu;Wang, Xin;Zang, Tingting;Hu, Yang;Hu, Xiaojing;Ren, Guangming;Xu, Xiuhong;Qu, Juanjuan
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.8
    • /
    • pp.1428-1438
    • /
    • 2016
  • In the present work, Arthrobacter sp. 25, a lead-tolerant bacterium, was assayed to remove lead(II) from aqueous solution. The biosorption process was optimized by response surface methodology (RSM) based on the Box-Behnken design. The relationships between dependent and independent variables were quantitatively determined by second-order polynomial equation and 3D response surface plots. The biosorption mechanism was explored by characterization of the biosorbent before and after biosorption using atomic force microscopy (AFM), scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, and Fourier transform infrared spectroscopy. The results showed that the maximum adsorption capacity of 9.6 mg/g was obtained at the initial lead ion concentration of 108.79 mg/l, pH value of 5.75, and biosorbent dosage of 9.9 g/l (fresh weight), which was close to the theoretically expected value of 9.88 mg/g. Arthrobacter sp. 25 is an ellipsoidal-shaped bacterium covered with extracellular polymeric substances. The biosorption mechanism involved physical adsorption and microprecipitation as well as ion exchange, and functional groups such as phosphoryl, hydroxyl, amino, amide, carbonyl, and phosphate groups played vital roles in adsorption. The results indicate that Arthrobacter sp. 25 may be potentially used as a biosorbent for low-concentration lead(II) removal from wastewater.

Development of Fault Diagnostic Algorithm based on Spectrum Analysis of Acceleration Signal for Wind Turbine System (가속도 신호의 주파수 분석에 기반한 풍력발전 고장진단 알고리즘 개발)

  • Ahn, Sung-Ill;Choi, Seong-Jin;Kim, Sung-Ho
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.6
    • /
    • pp.675-680
    • /
    • 2012
  • Wind energy is currently the fastest growing source of renewable energy used for electrical generation around the world. Wind farms are adding a significant amount of electrical generation capacity. The increase in the number of wind farms has led to the need for more effective operation and maintenance. CMS(Condition Monitoring System) can be used to aid plant operator in achieving these goals. Its aim is to provide operators with information regarding th e health of their machine, which in turn, can help them improve operation efficiency. In this work, wind turbine fault diagnostic algorithm which can diagnose the mass unbalance and aerodynamic asymmetry of the blades is proposed. Proposed diagnostic algorithm utilizes both FFT(Fast Feurier Transform) of the signal from accelerometers installed inside of nacelle and simple diagnostic logic. Furthermore, to verify the applicability of the proposed system, 3W small sized wind turbine system is tested and physical experiments are carried out.

Selection of Culture Media Applied to Grafted Cactus 'Hwangwall' for Export (수출용 접목 선인장 '황월'에 적합한 배지선발)

  • Kim, Yang Hee;Ryu, Byung Yeal
    • FLOWER RESEARCH JOURNAL
    • /
    • v.18 no.3
    • /
    • pp.171-178
    • /
    • 2010
  • This work is for selecting superior media which is similar to Peat Moss that is in general use as media of Gymnocalycium mihanovichii for Export such as 'Hwang wall' but lower price. The result on growth of 7 kinds of media (Peat Moss, BM6 Culture Medium, Coco Peat, Hydro Cray, Hydro Ball, Hugato, Vermiculite) which are applied watering (overhead irrigation, sub irrigation) based on bichemical analysis including chemical, physical analysis are following. The result of bi-chemical analysis shows that Coco Peat was stabilized planting after 90 days and Hydro Ball has high water holding capacity. The experimental result of growth in grafted cactus 'Hwangwall' shows Coco Peat is similar to Peat Moss on organic matter and in case of inorganic media, Hugato, Vermiculite, Hydro Cray made satisfactory results. But, the weight of inorganic media is too light to be tied. Consequently, Coco Peat and sphagnum moss as organic media has lower price and the condition of growth is analogous to Peat Moss. On the other hands, Hydro Ball was chosen as a substitute of Peat Moss in inorganic media.

Root Cause Analysis of Construction Accident Using 5 Why (5Why를 통한 건설사고 원인분석)

  • Choonhwan Cho
    • Journal of the Society of Disaster Information
    • /
    • v.20 no.3
    • /
    • pp.644-653
    • /
    • 2024
  • Purpose: Looking for the root cause of a construction accident leads to the problem of unreasonable construction costs and air setting by the person placing an order. In addition, low-cost bidding by a contractor with insufficient capacity is combined, creating an inappropriate construction structure that can cause an accident before the start of construction. Method: Analysis of the problem that the lack of original contractor resources in the construction environment is passed on to suppliers, and the phenomenon that partners and their workers are forced to push ahead with excessive work to secure a minimum margin. Result: Going back to the root of construction accidents, there are several dimensions of causes from physical phenomena to root causes, but the reason why accident prevention measures so far remain almost at the one-dimensional level of responding to the phenomenon is the lack of fundamental cause analysis. Conclusion: It is necessary to shift the paradigm to safety accident measures led by the client (the client) and the government, and construction accidents are reduced only when root cause of construction accidents is found through fundamental cause analysis techniques such as 5Why.

Walking test for assessing lung function and exercise performance in patients with cardiopulmonary disease (심폐질환 환자에서 걷기검사를 이용한 폐기능 및 운동기능의 평가)

  • Jung, Hye Kyung;Chang, Jung Hyun;Cheon, Seon Hee
    • Tuberculosis and Respiratory Diseases
    • /
    • v.43 no.6
    • /
    • pp.976-986
    • /
    • 1996
  • BACKGROUND : Dyspnea is common among patients with cardiopulmonary disease, and "daily disability" is defined as a functional impairment resulting from exercise intolerance. The maximal oxygen uptake(VO2max) during exhausting work is not only the best single physical indicator of the capacity of a man for sustaining hard muscular work, but also the most objective method by which one can determine the physical fitness of an individual as reflected by his cardiovascular system. However, the expense, time and personnel requirements make this procedure prohibitive for testing large group. The walking test is well-known type of exercise and it cost nothing to perform and have good reproducibility. Thus we performed the walking test and investigated correlations with spirometry, ABG and exercise test. METHOD: We observed the walking test and exercise test by cycle ergometer in 37 patients who visited our hospital because of dyspnea. Arterial blood gas analysis and spiromety, dyspnea index were performed, too. RESULT : (1) The VO2max was significantly lower in patients with COPD and cardiovascular disease than asthma and dyspnea on exertion group(p<0.05). The walking test distance was also lower in former. (2) The 12 minute walking test was significantly correlated with VO2max, PaCO2, FVC(%), FEV1(%) in all patients(p<0.05), and the walking test was only conelated with VO2max in patients with COPD(p<0.05). (3) In COPD patients, the VO2max was best correlated with FEV1(%) and FVC(%) and significantly correlated with walking test. But there was no correlation between walking test and FEV1(%) & FVC(%). (4) The 6 minute walking test was well correlated with 12 minute walking test(r=0.92. p<0.01). CONCLUSION : The walking test is the simple method for assessing exercise performance in patient with cardiopulmonary disease and a reliable indicator for VO2max. And the walking test is practical method for assessing on everyday disability rather than maximal exercise capacity. The 6 minute walking test is highly correlated with 12 minute walking test and a less exhausting for the patients and a time-saving for the investigator.

  • PDF

Performance Comparison of Spray-dried Mn-based Oxygen Carriers Prepared with γ-Al2O3, α-Al2O3, and MgAl2O4 as Raw Support Materials

  • Baek, Jeom-In;Kim, Ui-Sik;Jo, Hyungeun;Eom, Tae Hyoung;Lee, Joong Beom;Ryu, Ho-Jung
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.2
    • /
    • pp.285-291
    • /
    • 2016
  • In chemical-looping combustion, pure oxygen is transferred to fuel by solid particles called as oxygen carrier. Chemical-looping combustion process usually utilizes a circulating fluidized-bed process for fuel combustion and regeneration of the reduced oxygen carrier. The performance of an oxygen carrier varies with the active metal oxide and the raw support materials used. In this work, spraydried Mn-based oxygen carriers were prepared with different raw support materials and their physical properties and oxygen transfer performance were investigated to determine that the raw support materials used are suitable for spray-dried manganese oxide oxygen carrier. Oxygen carriers composed of 70 wt% $Mn_3O_4$ and 30 wt% support were produced using spray dryer. Two different types of $Al_2O_3$, ${\gamma}-Al_2O_3$ and ${\alpha}-Al_2O_3$, and $MgAl_2O_4$ were applied as starting raw support materials. The oxygen carrier prepared from ${\gamma}-Al_2O_3$ showed high mechanical strength stronger than commercial fluidization catalytic cracking catalyst at calcination temperatures below $1100^{\circ}C$, while the ones prepared from ${\alpha}-Al_2O_3$ and $MgAl_2O_4$ required higher calcination temperatures. Oxygen transfer capacity of the oxygen carrier prepared from ${\gamma}-Al_2O_3$ was less than 3 wt%. In comparison, oxygen carriers prepared from ${\alpha}-Al_2O_3$ and $MgAl_2O_4$ showed higher oxygen transfer capacity, around 3.4 and 4.4 wt%, respectively. Among the prepared Mn-based oxygen carriers, the one made from $MgAl_2O_4$ showed superior oxygen transfer performance in the chemical-looping combustion of $CH_4$, $H_2$, and CO. However, it required a high calcination temperature of $1400^{\circ}C$ to obtain strong mechnical strength. Therefore, further study to develop new support compositions is required to lower the calcination temperature without decline in the oxygen transfer performance.