• Title/Summary/Keyword: Physical wedge

Search Result 103, Processing Time 0.035 seconds

Physical Characteristics Comparison of Virtual Wedge Device with Physical Wedge (가상쐐기와 기존쐐기의 물리적 특성 비교)

  • Cho, Jung-Keun;Choi, Kye-Sook;Lim, Cheong-Hwan;Kim, Jeong-Koo;Jung, Hong-Ryang;Lee, Jung-Ok;Lee, Man-Goo
    • Journal of radiological science and technology
    • /
    • v.24 no.2
    • /
    • pp.49-52
    • /
    • 2001
  • We compared the characteristics of Siemens virtual wedge device with physical wedges for clinical application. We investigated the characteristics of virtual and physical wedges for various wedge angles (15, 30, 45, and 60) using 6- and 15-MV photon beams. Wedge factors were measured in water using an ion chamber for various field sizes and depths. In case of virtual wedge device, as upper jaw moves during irradiation, wedge angles were estimated by accumulated doses. These measurements were performed at off-axis points perpendicular to the beam central axis in water for a $15\;cm\;{\times}\;20\;cm$ radiation field size at the depth of 10 cm. Surface doses without and with virtual or physical wedges were measured using a parallel plate ion chamber at surface. Field size was $15\;cm\;{\times}\;20\;cm$ and a polystyrene phantom was used. For various field sizes, virtual and physical wedge factors were changed by maximum 2.1% and 3.9%, respectively. For various depths, virtual and physical wedge factors were changed by maximum 1.9% and 2.9%, respectively. No major difference was found between the virtual and physical wedge angles and the difference was within 0.5. Surface dose with physical wedge was reduced by maximum 20% (x-ray beam : 6 MV, wedge angle : 45, SSD : 80 cm) relative to one with virtual wedge or without wedge. Comparison of the characteristics of Siemens virtual wedge device with physical wedges was performed. Depth dependence of virtual wedge factor was smaller than that of physical wedge factor. Virtual and physical wedge factors were nearly independent of field sizes. The accuracy of virtual and physical wedge angles was excellent. Surface dose was found to be reduced using a physical wedge.

  • PDF

Comparison of Virtual Wedge versus Physical Wedge Affecting on Dose Distribution of Treated Breast and Adjacent Normal Tissue for Tangential Breast Irradiation (유방암의 방사선치료에서 Virtual Wedge와 Physical Wedge사용에 따른 유방선량 및 주변조직선량의 차이)

  • Kim Yeon-Sil;Kim Sung-Whan;Yoon Sel-Chul;Lee Jung-Seok;Son Seok-Hyun;Choi Ihl-Bong
    • Radiation Oncology Journal
    • /
    • v.22 no.3
    • /
    • pp.225-233
    • /
    • 2004
  • Purpose: The Ideal breast irradiation method should provide an optimal dose distribution In the treated breast volume and a minimum scatter dose to the nearby normal tissue. Physical wedges have been used to Improve the dose distribution In the treated breast, but unfortunately Introduce an Increased scatter dose outside the treatment yield, pavllculariy to the contralateral breast. The typical physical wedge (FW) was compared with 4he virtual wedge (VW) to do)ermine the difference In the dose distribution affecting on the treated breast and the contralateral breast, lung, heart and surrounding perlpheral soft tissue. Methods and Materials: The data collected consisted of a measurement taken with solid water, a Humanoid Alderson Rando phantom and patients. The radiation doses at the ipsllateral breast and skin, contralateral breast and skin, surrounding peripheral soft tissue, and Ipsllateral lung and heart were compared using the physical wedge and virtual wedge and the radiation dose distribution and DVH of the treated breast were compared. The beam-on time of each treatment technique was also compared Furthermore, the doses at treated breast skin, contralateral breast skin and skin 1.5 cm away from 4he field margin were also measured using TLD in 7 patients of tangential breast Irradiation and compared the results with phantom measurements. Results: The virtual wedge showed a decreased peripheral dose than those of a typical physical wedge at 15$^{\circ}$, 30$^{\circ}$, 45$^{\circ}$, and 60$^{\circ}$. According to the TLD measurements with 15$^{\circ}$ and 30$^{\circ}$ virtual wedge, the Irradiation dose decreased by 1.35$\%$ and 2.55$\%$ In the contralateral breast and by 0.87$\%$ and 1.9$\%$ In the skin of the contralateral breast respectively. Furthermore, the Irradiation dose decreased by 2.7$\%$ and 6.0$\%$ in the Ipsllateral lung and by 0.96$\%$ and 2.5$\%$ in the heart. The VW fields had lower peripheral doses than those of the PW fields by 1.8$\%$ and 2.33$\%$. However the skin dose Increased by 2.4$\%$ and 4.58$\%$ In the Ipsliateral breast. VW fields, In general, use less monitor units than PW fields and shoriened beam-on time about half of PW. The DVH analysis showed that each delivery technique results In comparable dose distribution in treated breast. Conclusion: A modest dose reduction to the surrounding normal tissue and uniform target homogeneity were observed using the VW technique compare to the PW beam in tangential breast Irradiation The VW field is dosmetrically superlor to the PW beam and can be an efficient method for minimizing acute, late radiation morbidity and reduce 4he linear accelerator loading bV decreasing the radiation delivery time.

Physical Characteristics Comparison of Virtual Wedge Device with Physical Wedge (가상쐐기와 기존쐐기의 물리적 특성 비교)

  • Choi Dong-Rak;Shin Kyung Hwan;Lee Kyu Chan;Kim Dae Yong;Ahn Yong Chan;Lim Do Hoon;Kim Moon Kyun;Huh Seung Jae
    • Radiation Oncology Journal
    • /
    • v.17 no.1
    • /
    • pp.78-83
    • /
    • 1999
  • Purpose : We have compared the characteristics of Siemens virtual wedge device with physical wedges for clinical application. Materials and Methods : We investigated the characteristics of virtual and physical wedges for various wedge angles (15, 30, 45, and 60$^{\circ}$) using 6- and 15MV photon beams. Wedge factors were measured in water using an ion chamber for various field sizes and depths. In case of virtual wedge device, as upper jaw moves during irradiation, wedge angles were estimated by accumulated doses. These measurements were performed at off-axis points perpendicular to the beam central axis in water for a 15cm${\times}$20cm radiation field size at the depth of loom. Surface doses without and with virtual or physical wedges were measured using a parallel plate ion chamber at surface. Field size was 15cm H20cm and a polystyrene phantom was used. Results : For various field sizes, virtual and physical wedge factors were changed by maximum 2.1% and 3.9%) , respectively. For various depths, virtual and physical wedge factors were changed by maximum 1.9% and 2.9%, respectively. No major difference was found between the virtual and physical wedge angles and the difference was within 0.5$^{\circ}$ . Suface dose with physical wedge was reduced by maximum 20% (x-ray beam :6 MV, wedge angle:45$^{\circ}$, 550: 80 cm) relative to one with virtual wedge or without wedge. Conclusions : Comparison of the characteristics of Siemens virtual wedge device with physical wedges was performed. Depth dependence of virtual wedge factor was smaller than that of physical wedge factor. Virtual and physical wedge factors were nearly independent of field sizes. The accuracy of virtual and physical wedge angles was excellent. Surface dose was found to be reduced using physical wedge.

  • PDF

A Study of Peripheral Doses for Physical Wedge and Dynamic Wedge (고정형 쐐기(Physical wedge)와 동적 쐐기(Dynamic wedge)의 조사야 주변 선량에 관한 연구)

  • Ko, Shin-Gwan;Min, Je-Soon;Na, Kyung-Soo;Lee, Je-Hee;Park, Heung-Deuk;Han, Dong-Kyoon
    • Journal of radiological science and technology
    • /
    • v.31 no.4
    • /
    • pp.407-413
    • /
    • 2008
  • Measurements of the peripheral dose were performed using a 2D array ion chamber and solid water phantom for a $10{\times}10cm$, source-surface distance (SSD) 90cm, 6 and 15MV photon beam at depths of 0.5cm, 5cm through $d_{max}$. Measurements of peripheral dose at 0.5cm and 5cm depths were performed from 1cm to 5cm outside of fields for the dynamic wedge and physical wedge $15^{\circ}$, $45^{\circ}$. For 6MV photon beam, the average peripheral dose of dynamic wedge were lower by 1.4% and 0.1% than that of physical wedge For 15MV photon beam, the peripheral dose of dynamic wedge were lower by maximum 1.6% that of physical wedge. The results showed that dynamic wedge can reduce scattered dose of clinical organ close to the field edge. The wedge systems produce different peripheral dose that should be considered in properly choosing a wedge system for clinical use.

  • PDF

Comparison of Wedge Factors of Dynamic Wedge and Physical Wedge (기능상쐐기와 물질쐐기의 쐐기인수의 비교)

  • Kim Jae Sung;Kang Wee-Saing
    • Progress in Medical Physics
    • /
    • v.15 no.4
    • /
    • pp.237-246
    • /
    • 2004
  • Even though the wedge factor was defined by ICRU, RTPS uses other definition different from the wedge factor to consider the wedge effect to correct dose. Because the factors with different concept are defined in a very different way, replacement of different factor could make severe error of dose and is unacceptable because their values are very different from each other. Radiotherapy machine installed in department includes physical wedges and function of dynamic wedge by upper jaws, and Eclipse and Pinnacle$^{3}$ such as RTPS are used. The wedge factors, relative wedge output factors and wedge field output factors of physical wedges and dynamic wedges were measured by an ionization chamber in water phantom. They are analyzed and compared in according to wedge position, field size, wedge angle, X-ray quality, measurement condition. Wedge factor, relative wedge output factors and wedge field output factors of dynamic wedges comparing physical wedges have an effect of several factors. Main factors effecting to the factors of dynamic wedges were field size and wedge angle. Beam quality of X-ray introduces a few effect to the factors. Because the factors related to wedge and defined with different concepts are different from each other, to reduce dose error it should be input by values proper to RTPS.

  • PDF

A Study of Peripheral Doses for Physical Wedge and Dynamic Wedge (고정형쐐기(Physical Wedge)와 동적쐐기(Dynamic Wedge)의 조사야 주변 선량에 관한 연구)

  • Min, Je-Soon;Na, Kyung-Soo;Lee, Je-Hee;Park, Heung-Deuk
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.19 no.2
    • /
    • pp.77-82
    • /
    • 2007
  • Purpose: This study investigates peripheral dose from physical wedge and dynamic wedge system on a multileaf collimator (MLC) equipment linear accelerator. Materials and Methods: Measurments were performed using a 2D array ion chamber and solid water phantom for a 10$\times$10 cm, source-surface distance (SSD) 90 cm, 6 and 15 MV photon beam at depths of 0.5 cm, 5 cm through dmax. Measurments of peripheral dose at 0.5 cm and 5 cm depths were performed from 1 cm to 5 cm outside of fields for the dynamic wedge and physical wedge 15$^\circ$, 45$^\circ$. Dose profiles normalized to dose at the maximum depth. Results: At 6 MV photon beam, the average peripheral dose of dynamic wedge were lower by 1.4% and 0.1%. At 15 MV photon beam, the peripheral dose of dynamic wedge were lower by maximum 1.6%. Conclusion: This study showed that dynamic wedge can reduce scattered dose of clinical organ close to the field edge and reduced treatment time. The wedge systems produce significantly different peripheral dose that should be considered in properly choosing a wedge system for clinical use.

  • PDF

Comparison of the Body Alignment during Standing on Level and Wedge Board (평지와 쐐기 발판(wedge board) 위에 기립 시 신체정렬 비교)

  • Lee, Jeong-Weon
    • Physical Therapy Korea
    • /
    • v.9 no.1
    • /
    • pp.53-61
    • /
    • 2002
  • The purpose of this study was to compare the body alignment during standing on level and wedge board. Twenty healthy college students (8 females, 12 males) were evaluated in this study. Diagnostic contourline potographic imaging system (Model JTC-1, Jodang Trading Co.) was used to measure body alignment. Sagittal and frontal plane images were used to analyze the body alignment. The result showed that the cervical and lumbar lordotic curve significantly decreased during standing on wedge board when compared with standing on level. On the other hand, thoracic kyphosis significantly increased during standing on wedge board. There was no significant difference in body alignment according to gender, weight, and height. Clinically, patients with low back pain and severe lordosis may be affected by heel wedge. Further study is needed to identify whether the standing on wedge board can change the body alignment in patients with low back pain and spinal deformity.

  • PDF

Diffraction of Electromagnetic Waves by a Dielectric Wedge, Part I: Physical Optics Approximation (쇄기형 유전체에 의한 전자파의 회절, I부 : 물리광학근사)

  • 김세윤;라정웅;신상영
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.25 no.8
    • /
    • pp.874-883
    • /
    • 1988
  • A complete form of physical optics solution to the diffraction of electromagnetic waves by a dielectric wedge with arbitrary dielectric constant and general wedge angle is obtained for an incident plane wave with any angle. Based on the formulation of dual integral equation in the spectral domain, the physical optics solution is constructed by sum of geometrical optics term including multiple reflection inside the wedge and the edge diffracted field, of which diffraction functions are represented in a quite simple form as series of cotangent functions weighted by the Fresnel reflection coefficients. Since diffraction patterns of physical optics are discontinous at dielectric interfaces, Part II and III of these three companion papers will be concerned with correction to the error of the physical optics approximation.

  • PDF

Contralateral Breast Dose Reduction Using a Virtual Wedge (가상쐐기를 이용한 반대측 유방선량감소)

  • Yeo, In-Hwan;Kim, Dae-Yong;Kim, Tae-Hyun;Shin, Kyung-Hwan;Chie, Eui-Kyu;Park, Won;Lim, Do-Hoon;Huh, Seung-Jae;Ahn, Yong-Chan
    • Radiation Oncology Journal
    • /
    • v.23 no.4
    • /
    • pp.230-235
    • /
    • 2005
  • Purpose: To evaluate the contralateral breast dose using a virtual wedge compared with that using a Physical wedge and an open beam in a Siemens linear accelerator. Materials and Methods: The contralateral breast dose was measured using diodes placed on a humanoid phantom. Diodes were placed at 5.5 cm (position 1), 9.5 cm (position 2), and 14 cm (position 3) along the medial-lateral line from the medial edge of the treatment field. A 6-MV photon beam was used with tangential irradiation technique at 50 and 230 degrees of gantry angle. Asymmetrically collimated $17{\times}10cm$ field was used. for the first set of experiment, four treatment set-ups were used, which were an open medial beam with a 30-degree wedged lateral beam (physical and virtual wedges, respectively) and a 15-degree wedged medial beam with a 15-degree wedged lateral beam (physical and virtual wedges, respectively). The second set of experiment consists of setting with medial beam without wedge, a 15-degree wedge, and a 50-degree wedge (physical and virtual wedges, respectively). Identical monitor units were delivered. Each set of experiment was repeated for three times. Results: In the first set of experiment, the contralateral breast dose was the highest at the position 1 and decreased in order of the position 2 and 3. The contralateral breast dose was reduced with open beam on the medial side ($2.70{\pm}1.46%$) compared to medial beam with a wedge (both physical and virtual) ($3.25{\pm}1.59%$). The differences were larger with a physical wedge ($0.99{\pm}0.18%$) than a virtual wedge ($0.10{\pm}0.01%$) at all positions. The use of a virtual wedge reduced the contralateral breast dose by 0.12% to 1.20% of the proscribed dose compared to a physical wedge with same technique. In the second experiment, the contralateral breast dose decreased in order of the open beam, the virtual wedge, and the physical wedge at the position 1, and it decreased in order of a physical wedge, an open beam, and a virtual wedge at the position 2 and 3. Conclusion: The virtual wedge equipped in a Siemens linear accelerator was found to be useful in reducing dose to the contralateral breast. Our additional finding was that the surface dose distribution from the Siemens accelerator was different from a Varian accelerator.

Comparison of two correction schemes to the physical of tics solution in case of dielectric wedge (쇄기형 유전체의 물리광학 근사해를 교정하는 두 수정 방법의 비교)

  • Kim, Se-Yun;Na, Jeong-Ung;Sin, Sang-Yeong
    • Proceedings of the KIEE Conference
    • /
    • 1984.07a
    • /
    • pp.287-291
    • /
    • 1984
  • The electromagnetic wave scattered by an arbitrary-angled dielectric wedge is constructed by physical optics solution and its corrected field. Two models of correction source are obtained; one is multipole line source at tip of wedge and the other is correction electric and magnetic currents distributed along the interfaces of dielectric wedge. Calculated far-field patterns are presented and compared each other.

  • PDF