• Title/Summary/Keyword: Physical sensor

Search Result 1,016, Processing Time 0.031 seconds

Interpretation of Physical Properties of Marine Sediments Using Multi­Sensor Core Logger (MSCL): Comparison with Discrete Samples

  • Kim, Gil-Young;Kim, Dae-Choul
    • Journal of the korean society of oceanography
    • /
    • v.38 no.4
    • /
    • pp.166-172
    • /
    • 2003
  • Multi­Sensor Core Logger (MSCL) is a useful system for logging the physical properties (compressional wave velocity, wet bulk density, fractional porosity, magnetic susceptibility and/or natural gamma radiation) of marine sediments through scanning of whole cores in a nondestructive fashion. But MSCL has a number of problems that can lead to spurious results depending on the various factors such as core slumping, gas expansion, mechanical stretching, and the thickness variation of core liner and sediment. For the verification of MSCL data, compressional wave velocity, wet bulk density, and porosity were measured on discrete samples by Hamilton Frame and Gravimetric method, respectively. Acoustic impedance was also calculated. Physical property data (velocity, wet bulk density, and impedance) logged by MSCL were slightly larger than those of discrete sample, and porosity is reverse. Average difference between MSCL and discrete sample at both sites is relatively small such as 22­24 m/s in velocity, $0.02­-0.08\;g/\textrm{cm}^3$ in wet bulk density, and 2.5­2.7% in porosity. The values also show systematic variation with sediment depth. A variety of factors are probably responsible for the differences including instrument error, various measurement method, sediment disturbance, and accuracy of calibration. Therefore, MSCL can be effectively used to collect physical property data with high resolution and quality, if the calibration is accurately completed.

Vibration-Based Signal-Injection Attack Detection on MEMS Sensor (진동 신호를 사용한 MEMS 센서 대상 신호오류 주입공격 탐지 방법)

  • Cho, Hyunsu;Oh, Heeseok;Choi, Wonsuk
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.31 no.3
    • /
    • pp.411-422
    • /
    • 2021
  • The autonomous driving system mounted on the unmanned vehicle recognizes the external environment through several sensors and derives the optimum control value through it. Recently, studies on physical level attacks that maliciously manipulate sensor data by performing signal-injection attacks have been published. signal-injection attacks are performed at the physical level and are difficult to detect at the software level because the sensor measures erroneous data by applying physical manipulations to the surrounding environment. In order to detect a signal-injection attack, it is necessary to verify the dependability of the data measured by the sensor. As so far, various methods have been proposed to attempt physical level attacks against sensors mounted on autonomous driving systems. However, it is still insufficient that methods for defending and detecting the physical level attacks. In this paper, we demonstrate signal-injection attacks targeting MEMS sensors that are widely used in unmanned vehicles, and propose a method to detect the attack. We present a signal-injection detection model to analyze the accuracy of the proposed method, and verify its effectiveness in a laboratory environment.

A Study on the On-the-Machine Measuring using a laser displacement sensor (레이저 변위 센서를 이용한 기상측정에 관한 연구)

  • 권세진;이정근;박정환;고태조;김선호
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.371-374
    • /
    • 2002
  • From reverse-engineering's point of view, the main step is the digitizing or gathering three-dimensional points on the target physical model. As well known, the touch or scanning probe gives higher accuracy, while the non-contact digitizing apparatus by use of laser or structured light can rapidly obtain digitized points of great bulk without contacting onto the part surface of the physical model. We propose a digitizing methodology by use of the LK-031 laser displacement sensor, which was tested with a physical model.

  • PDF

Development of Stretchable Joint Motion Sensor for Rehabilitation based on Silver Nanoparticle Direct Printing (은 나노입자 프린팅 기반의 재활치료용 신축성 관절센서 개발)

  • Chae, Woen-Sik;Jung, Jae-Hu
    • Korean Journal of Applied Biomechanics
    • /
    • v.31 no.3
    • /
    • pp.183-188
    • /
    • 2021
  • Objective: The purpose of this study was to develop a stretchable joint motion sensor that is based on silver nano-particle. Through this sensor, it can be utilized as an equipment for rehabilitation and analyze joint movement. Method: In this study, precursor solution was created, after that, nozel printer (Musashi, Image master 350PC) was used to print on a circuit board. Sourcemeter (Keithley, Keithley-2450) was used in order to evaluate changes of electric resistance as the sensor stretches. In addition, the sensor was attached on center of a knee joint to 2 male adults, and performed knee flexion-extension in order to evaluate accurate analysis; 3 infrared cameras (100 Hz, Motion Master 100, Visol Inc., Korea) were also used to analyze three dimensional movement. Descriptive statistics were suggested for comparing each accuracy of measurement variables of joint motions with the sensor and 3D motions. Results: The change of electric resistance of the sensor indicated multiple of 30 times from initial value in 50% of elongation and the value of electric resistance were distinctively classified by following 10%, 20%, 30%, 40% of elongation respectively. Through using the sensor and 3D camera to analyze movement variable, it showed a resistance of 99% in a knee joint extension, whereas, it indicated about 80% in flexion phase. Conclusion: In this research, the stretchable joint motion sensor was created based on silver nanoparticle that has high conductivity. If the sensor stretches, the distance between nanoparticles recede which lead gradual disconnection of an electric circuit and to have increment of electric resistance. Through evaluating angle of knee joints with observation of sensor's electric resistance, it showed similar a result and propensity from 3D motion analysis. However, unstable electric resistance of the stretchable sensor was observed when it stretches to maximum length, or went through numerous joint movements. Therefore, the sensor need complement that requires stability when it comes to measuring motions in any condition.

A Case Study on Tangible Contents Development for Contactless Physical Education (비대면 체육 교육을 위한 실감 콘텐츠 개발 사례)

  • Eun, Kwang-Ha;Hur, Young
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.1
    • /
    • pp.47-57
    • /
    • 2022
  • Demands for tangible contents using VR/AR technologies are much bigger as contactless services such as sports, physical activity, and fitness are expanded after COVID-19. A variety of technologies such as an offer and analysis of tangible data through a sensor technology, users' physical movement sensing through a motion recognition sensor, a real-time measurement of a physical skeleton point a multiple access to a real-time video, and AI training are being utilized as main technologies. This case study utilized motion recognition technologies as the study on tangible contents necessary for indoor-based physical education, sports, and fitness in the contactless environment and suggested cases to develop the physical measurement contents by design approach for the measurement assessment necessary for the development in tangible contents. The research established lists of the measurement assessment based on professionals' consultations within the measurement assessment function through the test to plan tangible contents and developed tangible contents by reflecting them as assessment measurement elements of tangible contents. The research can be utilized as the design approach of industrial companies which intend to develop tangible contents as well as reference cases of the research on contactless tangible contents for the sports and physical education.

Development of a Pet Robot Chasing a Moving Person in Outdoor Environment

  • Ahn, Cheol-Ki;Lee, Min-Cheol;Aoshima, Nobuharu
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.6 no.4
    • /
    • pp.67-72
    • /
    • 2005
  • In a park or street, we can see many people jogging or walking with their dogs that are chasing their masters. In this study, a pet robot that imitates dog's behavior is developed. The task of robot is to chase a person who is recognized as the master. The physical structure and the sensor system are designed for the task and environment. A three-wheel type locomotion system is designed as the robot's physical structure which can follow a person who is jogging in outdoor environment like a park. A sensor system, which can detect relative position of the master to the robot in highly dynamic and hazardous worlds, is developed. This sensor system consists of a signal transmitter which is held by the master and ultrasonic sensor array which are mounted on the robot. The transmitter emits RF (radio frequency) and ultrasonic signals simultaneously. The ultrasonic sensor array detects the signals and calculates direction and distance between the robot and the transmitter. The developed RF-ultrasonic sensor is evaluated through experiments. A purely reactive behavior-based control architecture is used for the robot. The behavior control performance of the robot is assessed in outdoor and indoor tests.

The applicability of noncontact sensors in the field of rehabilitation medicine

  • Yoo Jin Choo;Jun Sung Moon;Gun Woo Lee;Wook-Tae Park;Min Cheol Chang
    • Journal of Yeungnam Medical Science
    • /
    • v.41 no.1
    • /
    • pp.53-55
    • /
    • 2024
  • A noncontact sensor field is an innovative device that can detect, measure, or monitor physical properties or conditions without direct physical contact with the subject or object under examination. These sensors use a variety of methods, including electromagnetic, optical, and acoustic technique, to collect information about the target without physical interaction. Noncontact sensors find wide-ranging applications in various fields such as manufacturing, robotics, automobiles, security, environmental monitoring, space industry, agriculture, and entertainment. In particular, they are used in the medical field, where they provide continuous monitoring of patient conditions and offer opportunities in rehabilitation medicine. This article introduces the potential of noncontact sensors in the field of rehabilitation medicine.

An Enhanced Scheme of PUF-Assisted Group Key Distribution in SDWSN (SDWSN 환경의 PUF 기반 그룹 키 분배 방법 개선)

  • Oh, Jeong Min;Jeong, Ik Rae;Byun, Jin Wook
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.29 no.1
    • /
    • pp.29-43
    • /
    • 2019
  • In recent years, as the network traffic in the WSN(Wireless Sensor Network) has been increased by the growing number of IoT wireless devices, SDWSN(Software-Defined Wireless Sensor Network) and its security that aims a secure SDN(Software-Defined Networking) for efficiently managing network resources in WSN have received much attention. In this paper, we study on how to efficiently and securely design a PUF(Physical Unclonable Function)-assisted group key distribution scheme for the SDWSN environment. Recently, Huang et al. have designed a group key distribution scheme using the strengths of SDN and the physical security features of PUF. However, we observe that Huang et al.'s scheme has weak points that it does not only lack of authentication for the auxiliary controller but also it maintains the redundant synchronization information. In this paper, we securely design an authentication process of the auxiliary controller and improve the vulnerabilities of Huang et al.'s scheme by adding counter strings and random information but deleting the redundant synchronization information.

Energy Efficient Control Scheme in Wireless Sensor Networks

  • Pongot, Kamil;Jeong, Woo-Jin;Lee, Jae-Yoon;Yoon, Dong-Weon;Park, Sang-Kyu
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.371-372
    • /
    • 2008
  • In this paper, we consider wireless sensor networks with hard energy constraint, where each node is powered by a small battery. Under this hard constraint, reducing energy consumption is the most important design consideration for wireless sensor networks. Energy saving and control is an important issue, involved in the design of most sensor nodes. In this context, we focus on physical layer design where energy constraint problem can be modeled as an optimization of transmission modulation scheme[1]. Specifically, our analyses are based on energy control schemes that are relative to physical layer design on upper bound SEP MPSK in AWGN channels.

  • PDF

The Effect of Temperature on Aluminum Oxide and Chilled Mirror Dew-point Hygrometers (산화 알루미늄 및 냉각거울 노점계의 온도 의존성에 관한 연구)

  • Kim, Jong Chul;Choi, Byung Il;Woo, Sang-Bong;Kim, Yong-Gyoo;Lee, Sang-Wook
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.1
    • /
    • pp.50-55
    • /
    • 2017
  • The measurement of absolute humidity of gases is essential in many industries. The effect of temperature on aluminum oxide and chilled mirror dew-point hygrometers is investigated. The temperature of laboratory, pipe line, and sensor is varied and the dew point is measured by two different aluminum oxide hygrometers. In all cases, the dew point of hygrometers is increased as the temperature is elevated. The reason behind this observation is due to desorption of water from the inside of pipe line and/or sensor surroundings at elevated temperature that result in the increase of the absolute humidity. Moreover, the sensor itself shows a certain degree of temperature dependency in sensing the humidity especially at low temperature. It is also studied that chilled mirror dew-point hygrometer may indicate a higher dew point than the reference at high temperature because the cooling capability of mirror is decreased at high temperature. Our study will provide evidences in the incorporation of the temperature effect as uncertainty factors in the standard calibration procedure for dew point hygrometers.