• Title/Summary/Keyword: Physical property test

Search Result 297, Processing Time 0.024 seconds

Physical Stimulus of Silk Woven Fabrics, Subjective Hand and Mechanical Properties (견직물의 물리적 자극에 따른 태와 역학적 특성)

  • 김춘정;나영주
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.24 no.3
    • /
    • pp.429-439
    • /
    • 2000
  • This study was aimed to investigate the handle and mechanical properties of silk woven fabrics according to the fabric structure and yarn types 56 male and female students evaluated 16 black specimens with semantic differential scale of 20 hand adjectives. Mechanical parameters such as surface properties, bending properties and compression properties were tested using by KES-FS system. Data were analyzed through factor analysis, pearson correlation coefficient and t-test using PC SAS package. The results were as follows: The hand adjectives were grouped as 4 'surface roughness', 'flexibility', ;sense of thermal', and 'dryness'. 'Surface roughness' was highly sensed at satin fabrics of hard-twist yarn, noil yarn and spun yarn, while it was not at the fabrics of normal satin and twill at all. 'Flexibility' was reverse to 'surface roughness'. Thermal sense was felt highly at satin fabrics of noil-yarn, while low at plain fabrics of normal yarn. 'Dryness' was high at satin fabrics of hard-twist yarn and while it was low at normal satin fabrics. Predicted equations for subjective hand from mechanical properties of fabrics were developed using Stevens's law and stepwise regression and the coefficients of determination were high.

  • PDF

Development of Vibrator for Magnetic Resonance Elastography (자기공명 탄성계수 영상법을 위한 진동기의 개발 및 기초실험)

  • Lee, Tae-Hwi;Suh, Yong-Seon;Kim, Young-Tea;Lee, Byung-Il;Woo, Eung-Je
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.1
    • /
    • pp.75-83
    • /
    • 2007
  • Elasticity is an important physical property of biological tissues. Differences in elasticity can help facilitate the diagnosis of tumors and their extent. Magnetic Resonance Elastography (MRE) tries to visualize images of tissue elasticity by externally applying shear stress on the surface of an imaging object. Applied shear stress induces internal displacements that can be measured from MR phase images. In order to conduct MRE imaging experiments, we need to first develop a vibrator. We found that there does not exist enough technical information to design the MRE vibrator. In this paper, we describe the theory, design and construction of an MRE vibrator. We report the performance of the developed vibrator using two different test methods. We found that the vibrator successfully induces enough internal displacements that can be imaged using an MRI scanner. We suggest future studies of numerous MRE imaging experiments using the vibrator.

Evaluation of Thermal Comfortable Feeling by EEG Analysis

  • Kamijo, Masayoshi;Horiba, Yosuke;Hosoya, Satoshi;Takatera, Masayuki;Sadoyama, Tsugutake;Shimizu, YosiHo
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2000.04a
    • /
    • pp.230-234
    • /
    • 2000
  • Thermal comfort by wearing clothes is the important element which gives influence to a clothing comfort. The thermal comfort of clothes have been evaluated by sensory test and physical property of clothes material. To evaluate a thermophysiological comfort. a new evaluation method which measures the physiological response such as electroencephalogram(EEG) is attracting the attention of many people. In the chilly environment, the EEGs in t재 kinds of thermal conditions : with and without clothes were measured. By utilizing the chaos analysis, the behavior of the obtained EEGs were quantiatively expressed in the correlation dimension. As a result, the correlation dimension of the EEGs in being thermal comfortable feeling by putting on clothes, was bigger than the correlation dimension of the EEGs in being cold and discomfort. These results suggest that chaotic analysis of EEG is effective to the quantitative evaluation of thermal esthesis.

  • PDF

Development of Simple Density Measurement System for Watermelons (수박 밀도의 간편 계측시스템 개발)

  • 최규홍;이강진;최동수;김기영;손재룡
    • Journal of Biosystems Engineering
    • /
    • v.29 no.2
    • /
    • pp.167-174
    • /
    • 2004
  • Density is a physical property which contains information relating to the internal quality of fruits and vegetables, and can be used as an index for nondestructive quality evaluation. Density sorting has been employed by farmers for some agricultural products since ancient times. In this study, an automatic density measuring system based on the platform scale or water displacement method was developed for density sorting of watermelon. It consisted of water tan, load cell, net tray, electric motor, limit switch, control system and its program. The resolution of density was 0.001 g/㎤. In order to calibrate and evaluate the accuracy, the density was measured using a balloon kept in cold water. It showed 1.002 g/㎤ which almost correspond to real density of water. Test results with 6 watermelons and 3 replications showed that the standard deviations of the dens were 0.001∼0.004 g/㎤. The relationship between density and internal quality of watermelon was investigated using the system. The densities of hollow watermelons were less than 0.950 g/㎤, it was apparent that the density of the watermelon was related to the degree of hollowness. But the soluble solid contents and internal defects could not be estimated from the density.

Industry-University-Research Collaborative Geoscientific Study in Pocheon area for Groundwater Survey, Part I: Borehole Technology (포천지역 지하수기초조사 산학연 공동탐사 사례연구(I): 공내탐사기술)

  • Yu, Young-Chul;Lee, Sang-Tae;You, Young-Jun;Hwang, Se-Ho;Sin, Je-Hyun
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2005.05a
    • /
    • pp.117-122
    • /
    • 2005
  • The purpose of this study is to analyze a correlation between lithology, rock physical property and fracture zone by multiple-logging method, which includes optic borehole image, suspension type PS, resistivity, SP, natural gamma, density, caliper logging located in Ogar test area, Changsu, Pocheon-gun, Gyunggi Province. The outstanding geophysical logging responses particularly shown from lithology pattern, fracture zone, dike zone. in result, the depth of fracture zone which enable groundwater flow estimated at $67{\sim}69m$.

  • PDF

Effect of Mixed Polymer Treatment on the Physical Property of the Corrugated Container Board (혼합고분자처리에 의한 골판지 원지 및 골판지의 물성변화)

  • 권기훈;임부국;박성배;양재경;장준복;이종윤
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.31 no.4
    • /
    • pp.69-75
    • /
    • 1999
  • This study was performed to investigated the application of mixed resins for corrugated container board. The corrugated container board yields a sandwich structure in which a linerboard material is glued to a corrugated medium . Now, manufacturing corrugated container boards don't provide sufficient strength, and result in box failure during shipping . Therefore improvement of box strength is necessary . In this study, we intend to improve box strength by improving corrugated medium strength with mixed resins and to find the optimum treatment condition of this resins. First, we tried to mixed resins as Starch+CMC, Starch_Irea, CMC+Urea, Second, investigated to applicability of this resins for corrugated medium , and the third, measured tensile index, burst index, and edgewise compression index on liner, medium paper, and single faced corrugated container board. In this test results, we obtained that the improvement ratios of tensile index in liner and medium paper were approximately 80-185%, 60-118% , respectively. The respecting improvement ratios of edgewise compression index of single faced corrugated container board was approximately 91-124%, relatively. In addition, we concluded that optimum condition in mixing ratio was 1 :3 with CMC + Urea and the ap[plication amounts was 9% on materials. Fro manufacture of corrugated container board, optimum condition in mixing ratio was 1 : 3 with 5% CMC +Urea , because of considering to improvement of strength on cost.

  • PDF

Reforming Property of Tile and Concrete Surface layer Using Self-cleaning Concrete Impregnant (Self-cleaning 침투성 함침제의 적용에 따른 타일 및 콘크리트 표층부의 개질특성)

  • Song, Hun;Jeon, Chan-Soo;Kim, Young-Ho
    • Journal of The Korean Digital Architecture Interior Association
    • /
    • v.13 no.4
    • /
    • pp.61-68
    • /
    • 2013
  • Concrete structure is not the only material vulnerable to physical and chemical processes of deterioration associates with severe conditions. Deterioration of the concrete structure, however, occurs more progressively from the outside of the concrete exposed to severe conditions. Especially, Carbonation, chloride ion attack is more important factor of concrete durability. This study is interested in manufacturing the self-cleaning concrete surface impregnant including TEOS, lithium silicate for the repair of the exposed concrete surface and the color concrete requiring the advanced function in view of the concrete appearance. Form the results, TEOS and lithium silicate are very effective that increasing the concrete durability using self-cleaning concrete impregnant. Self-cleaning concrete impregnant specimens is satisfied with performance requirement of KS standard in adhesion test in tension but the reinforcement of concrete substrate is slight. So, the self-cleaning concrete impregnant of this study is more desirable for the improvement of durability rather than the reinforcement.

Heavy Metal Leaching, CO2 Uptake and Mechanical Characteristics of Carbonated Porous Concrete with Alkali-Activated Slag and Bottom Ash

  • Kim, G.M.;Jang, J.G.;Naeem, Faizan;Lee, H.K.
    • International Journal of Concrete Structures and Materials
    • /
    • v.9 no.3
    • /
    • pp.283-294
    • /
    • 2015
  • In the present study, a porous concrete with alkali activated slag (AAS) and coal bottom ash was developed and the effect of carbonation on the physical property, microstructural characteristic, and heavy metal leaching behavior of the porous concrete were investigated. Independent variables, such as the type of the alkali activator and binder, the amount of paste, and $CO_2$ concentration, were considered. The experimental test results showed that the measured void ratio and compressive strength of the carbonated porous concrete exceeded minimum level stated in ACI 522 for general porous concrete. A new quantitative TG analysis for evaluating $CO_2$ uptake in AAS was proposed, and the result showed that the $CO_2$ uptake in AAS paste was approximately twice as high as that in OPC paste. The leached concentrations of heavy metals from carbonated porous concrete were below the relevant environmental criteria.

Low Temperature Processing of Nano-Sized Magnesia Ceramics Using Ultra High Pressure (초고압을 이용한 나노급 마그네시아 분말의 저온 소결 연구)

  • Song, Jeongho;Eom, Junghye;Noh, Yunyoung;Kim, Young-Wook;Song, Ohsung
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.3
    • /
    • pp.226-230
    • /
    • 2013
  • We performed high pressure high temperature (HPHT) sintering for the 20 nm MgO powders at the temperatures from $600^{\circ}C$ to $1200^{\circ}C$ for only 5 min under 7 GPa pressure condition. To investigate the microstructure evolution and physical property change of the HPHT sintered MgO samples, we employed a scanning electron microscopy (SEM), density and Vickers hardness measurements. The SEM results showed that the grain size of the sintered MgO increased from 200 nm to $1.9{\mu}m$ as the sintering temperature increased. The density results showed that the sintered MgO achieved a more than 95% of the theoretical density in overall sintering temperature range. Based on Vickers hardness test, we confirmed that hardness increased as temperature increased. Our results implied that we might obtain the dense sintered MgO samples with an extremely short time and low temperature HPHT process compared to conventional electrical furnace sintering process.

Fundamental Study of Deicing Pavement System Using Conductive Materials (전도성 재료를 사용한 도로결빙방지 포장시스템 개발을 위한 기초연구)

  • Lee, Kanghwi;Lee, Jaejun
    • International Journal of Highway Engineering
    • /
    • v.17 no.5
    • /
    • pp.11-18
    • /
    • 2015
  • PURPOSES : The purpose of this study is to develop a deicing pavement system using carbon fiber or graphite with high electrical conductivity and thermal conductivity. METHODS: Based on literature reviews, in general, conventional concrete does not exhibit electrical and thermal conductivity. In order to achieve a new physical property, experiments were conducted by adding graphite and carbon fiber to a mortar specimen. RESULTS: The result of the laboratory experiment indicates that the addition of graphite can significantly reduce the compressive strength and improve the thermal conductivity of concrete. In the case of carbon fiber, however, the compressive strength of the concrete is slightly increased, whereas, the thermal conductivity is slightly decreased against the plain mortar irrespective of the length of the carbon fiber. In addition, a mixture of the graphite and carbon fiber can greatly improve the degree of heating test. CONCLUSIONS : Various properties of cement mortar change with the use of carbon fiber or graphite. To enhance the conductivity of concrete for deicing during winter, both carbon fiber and graphite are required to be used simultaneously.