Browse > Article
http://dx.doi.org/10.1007/s40069-015-0111-x

Heavy Metal Leaching, CO2 Uptake and Mechanical Characteristics of Carbonated Porous Concrete with Alkali-Activated Slag and Bottom Ash  

Kim, G.M. (Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology)
Jang, J.G. (Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology)
Naeem, Faizan (Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology)
Lee, H.K. (Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology)
Publication Information
International Journal of Concrete Structures and Materials / v.9, no.3, 2015 , pp. 283-294 More about this Journal
Abstract
In the present study, a porous concrete with alkali activated slag (AAS) and coal bottom ash was developed and the effect of carbonation on the physical property, microstructural characteristic, and heavy metal leaching behavior of the porous concrete were investigated. Independent variables, such as the type of the alkali activator and binder, the amount of paste, and $CO_2$ concentration, were considered. The experimental test results showed that the measured void ratio and compressive strength of the carbonated porous concrete exceeded minimum level stated in ACI 522 for general porous concrete. A new quantitative TG analysis for evaluating $CO_2$ uptake in AAS was proposed, and the result showed that the $CO_2$ uptake in AAS paste was approximately twice as high as that in OPC paste. The leached concentrations of heavy metals from carbonated porous concrete were below the relevant environmental criteria.
Keywords
porous concrete; coal bottom ash; alkali activated slag; carbonation; heavy metal leaching;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Qian, G., Sun, D. D., & Tay, J. H. (2003b). Characterization of mercury- and zinc-doped alkali-activated slag matrix Part II. Zinc. Cement and Concrete Research, 33, 1257-1262.   DOI
2 Qian, G., Sun, D. D., & Tay, J. H. (2003c). Characterization of mercury- and zinc-doped alkali-activated slag matrix Part I. Mercury. Cement and Concrete Research, 33, 1251-1256.   DOI
3 Ravikumar, D., & Neithalath, N. (2013). Electrically induced chloride ion transport in alkali activated slag concretes and the influence of microstructure. Cement and Concrete Research, 47, 31-42.   DOI
4 Shi, C., & Fernandez-Jimenez, A. (2006). Stabilization/solidification of hazardous and radioactive wastes with alkaliactivated cements. Journal of Hazardous Materials, 137(3), 1656-1663.   DOI
5 Singh, M., & Siddique, R. (2014). Strength properties and micro-structural properties of concrete containing coal bottom ash as partial replacement of fine aggregate. Construction and Building Materials, 50, 246-256.   DOI
6 Song, S., & Jennings, H. M. (1999). Pore solution chemistry of alkali-activated ground granulated blast-furnace slag. Cement and Concrete Research, 29, 159-170.   DOI
7 Sriravindrarajah, R., Wang, N. D. H., & Ervin, L. J. W. (2012). Mix design for pervious recycled aggregate concrete. International Journal of Concrete Structures and Materials, 6(4), 239-246.   DOI
8 Vandecasteele, C., Dutre, V., Geysen, D., & Wauters, G. (2002). Solidification/stabilization of arsenic bearing fly ash from the metallurgical industry. Immobilization mechanism of arsenic. Waste Management, 22(2), 143-146.   DOI
9 Wang, S. D., & Scrivener, K. L. (1995). Hydration products of alkali activated slag cement. Cement and Concrete Research, 25, 561-571.   DOI
10 Ylmen, R., & Jaglid, U. (2013). Carbonation of Portland cement studied by diffuse reflection fourier transform infrared spectroscopy. International Journal of Concrete Structures and Materials, 7, 119-125.   DOI
11 Zhang, J., Provis, J. L., Feng, D., & van Deventer, J. S. J. (2008). Geopolymers for immobilization of $Cr^{6+},\;Cd^{2+},\;and\;Pb^{2+}$. Journal of Hazardous Materials, 157, 587-598.   DOI
12 Zhang, Y., Sun, W., Chen, Q., & Chen, L. (2007). Synthesis and heavy metal immobilization behaviors of slag based geopolymer. Journal of Hazardous Materials, 143, 206-213.   DOI
13 Bhutta, M. A. R., Hasanah, N., Farhayu, N., Hussin, M. W., Tahir, M. B. M., & Mirza, J. (2013). Properties of porous concrete from waste crushed concrete (recycled aggregate). Construction and Building Materials, 47, 1243-1248.   DOI
14 American Concrete Institute, ACI 522R-10. Report on pervious concrete. ACI Committee 522 2010.
15 American Society for Testing and Materials, ASTM C39. (2012). Standard test method for compressive strength of cylindrical concrete specimens. West Conshohocken, PA: ASTM International.
16 Bakharev, T., Sanjayan, J. G., & Cheng, Y.-B. (2001). Resistance of alkali-activated slag concrete to carbonation. Cement and Concrete Research, 31, 1277-1283.   DOI
17 Bernal, S. A., Nicolas, R., Provis, J. L., De Gutierrez, R. M., & van Deventer, J. S. (2014). Natural carbonation of aged alkali-activated slag concretes. Materials and Structures, 47, 693-707.   DOI
18 Bertos, M. F., Simons, S. J. R., Hills, C. D., & Carey, P. J. (2004). A review of accelerated carbonation technology in the treatment of cement-based materials and sequestration of $CO_2$. Journal of Hazardous Materials, 112(2), 193-205.   DOI
19 Bhutta, M. A. R., Tsuruta, K., & Mirza, J. (2012). Evaluation of high-performance porous concrete properties. Construction and Building Materials, 31, 67-73.   DOI
20 Bochenczyk, A. U. (2010). Mineral sequestration of CO2 in suspensions containing mixtures of fly ashes and desulphurization waste. Gosposarka Surowcami Mineralnymi, 26, 109-118.
21 Chi, M.C., Chang, J.J., & Huang, R. (2012). Strength and drying shrinkage of alkali-activated slag paste and mortar. Advances in Civil Engineering, 2012.
22 Deja, J. (2002). Immobilization of $Cr^{6+},\;Cd^{2+},\;Zn^{2+}\;and\;Pb^{2+}$ in alkali-activated slag binders. Cement and Concrete Research, 32, 1971-1979.   DOI
23 Dermatas, D., & Meng, X. (2003). Utilization of fly ash for stabilization/solidification of heavy metal contaminated soil. Engineering Geology, 70, 337-394.
24 Environment, Health and Safety Online. (2008). The EPA TCLP: Toxicity characteristic leaching procedure and characteristic wastes (D-codes). Environment, Health and Safety Online.
25 Edwards, H. G., Currie, K. J., Ali, H. R., Villar, S. E. J., David, A. R., & Denton, J. (2007). Raman spectroscopy of natron: shedding light on ancient Egyptian mummification. Analytical and Bioanalytical Chemistry, 388(3), 683-689.   DOI
26 Ekmekyapar, A., Ersahan, H., & Yapici, S. (1996). Nonisothermal decomposition kinetics of trona. Industrial and Engineering Chemistry Research, 35, 258-262.   DOI
27 Eloneva, S., Teir, S., Salminen, J., Fogelholm, C. J., & Zevenhoven, R. (2008). Fixation of CO2 by carbonating calcium derived from blast furnace slag. Energy, 33, 1461-1467.   DOI
28 Fleischer, M., Sarofim, A. F., Fassett, D. W., Hammond, P., Shacklette, H. T., Nisbet, I. C., & Epstein, S. (1974). Environmental impact of cadmium: a review by the Panel on Hazardous Trace Substances. Environmental Health Perspectives, 7, 253.   DOI
29 Guo, Q., Qu, J., Qi, T., Wei, G., & Han, B. (2011). Activation pretreatment of limonitic laterite ores by alkali-roasting method using sodium carbonate. Minerals Engineering, 24, 825-832.   DOI
30 Halim, C. E., Acott, J. A., Natawardaya, H., Amal, R., Beydoun, D., & Low, G. (2004). Comparison between acetic acid and landfill leachates for the leaching of Pb(II), Cd(II), As(V), and Cr(VI) from cementitious wastes. Environmental Science and Technology, 38, 3977-3983.   DOI
31 Kar, A., Ray, I., Halabe, U. B., Unnikrishnan, A., & Dawson-Andoh, B. (2014). Characterizations and quantitative estimation of alkali-activated binder paste from microstructures. International Journal of Concrete Structures and Materials, 8, 213-228.   DOI
32 Jang, J. G., Ahn, Y. B., Souri, H., & Lee, H. K. (2015a). A novel eco-friendly porous concrete fabricated with coal ash and geopolymeric binder: Heavy metal leaching characteristics and compressive strength. Construction and Building Materials, 79, 173-181.   DOI
33 Jang, J. G., Kim, H. J., Park, S. M., & Lee, H. K. (2015b). The influence of sodium hydrogen carbonate on the hydration of cement. Construction and Building Materials, 94, 746-749.   DOI
34 Japanese Standard Association, JIS A 1104. (2006). Methods of test for bulk density of aggregates and solid content in aggregates. JSA
35 Kim, H. K., Ha, K. A., Jang, J. G., & Lee, H. K. (2014a). Mechanical and chemical characteristics of bottom ash aggregates cold-bonded with fly ash. Journal of Korean Ceramic Society, 51, 57-63.   DOI
36 Kim, H. K., Jang, J. G., Choi, Y. C., & Lee, H. K. (2014b). Improved chloride resistance of high-strength concrete amended with coal bottom ash for internal curing. Construction and Building Materials, 71, 334-343.   DOI
37 Kim, M. S., Jun, Y., Lee, C., & Oh, J. E. (2013). Use of CaO as an activator for producing a price-competitive non-cement structural binder using ground granulated blast furnace slag. Cement and Concrete Research, 54, 208-214.   DOI
38 Kim, H. K., & Lee, H. K. (2010). Influence of cement flow and aggregate type on the mechanical and acoustic characteristics of porous concrete. Applied Acoustics, 71, 607-615.   DOI
39 Li, X. D., Poon, C. S., Sun, H., Lo, I. M. C., & Kirk, D. W. (2012). Heavy metal speciation and leaching behaviors in cement based solidified/stabilized waste materials. Journal of Hazardous Materials, 82(3), 215-230.   DOI
40 Kuo, W. T., Liu, C. C., & Su, D. S. (2013). Use of washed municipal solid waste incinerator bottom ash in pervious concrete. Cement & Concrete Composites, 37, 328-335.   DOI
41 Lian, C., Zhuge, Y., & Beecham, S. (2011). The relationship between porosity and strength of porous concrete. Construction and Building Materials, 25, 4292-4298.
42 NSF International standard/American National Standard, NSF/ANSI 61-2007a. (2007). Drinking water system components-health effects. Oxfordshire: NSF International.
43 Park, S. B., & Tia, M. (2004). An experimental study on the water purification properties of porous concrete. Cement and Concrete Research, 34, 177-184.   DOI
44 Perera, D. S., Aly, Z., Vance, E. R., & Mizumo, M. (2005). Immobilization of Pb in a geopolymer matrix. Journal of the American Ceramic Society, 88, 2586-2588.   DOI
45 Phoo-ngernkham, T., Maegawa, A., Mishima, N., Hatanaka, S., & Chindaprasirt, P. (2015). Effects of sodium hydroxide and sodium silicate solutions on compressive and shear bond strengths of FA-GBFS geopolymer. Construction and Building Materials, 91, 1-8.   DOI
46 Puertas, F., Palacious, M., & Vazquez, T. (2006). Carbonation process of alkali-activated slag mortars. Journal of Materials Science, 41, 3071-3082.   DOI
47 Qian, G., Sun, D. D., & Tay, J. H. (2003a). Immobilization of mercury and zinc in an alkali-activated slag matrix. Journal of Hazardous Materials, 101(2), 65-77.   DOI