• Title/Summary/Keyword: Physical model experiments

Search Result 368, Processing Time 0.024 seconds

Experimental Study of Runoff Induced by Infiltration Trench (침투 트렌치로 인한 유출 양상의 실험 연구)

  • Lee, Sangho;Cho, Heeho;Lee, Jungmin;Park, Jaehyun
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.1
    • /
    • pp.107-117
    • /
    • 2008
  • Infiltration facilities are effective instruments to mitigate flood and can increase base runoff in urban watersheds. In order to analyze effects of infiltration trenches physical model experiments were conducted. The physical model facility consists of two soil tanks, artificial rainfall generators, tensiometers, and piezometers. The experiment was conducted by nine times and each case differed in rainfall intensity, rainfall duration and the type of ground surface. Measured quantities in the experiments are as follows: surface runoff, subsurface runoff, trench pipe runoff, groundwater level, water content, etc. The following resulted from the model experiment: The volume of subsurface runoff at trench watershed was maximum 78.3% compared with rainfall. This value is bigger than that of ordinary rate of subsurface runoff, and shows a groundwater recharge effect of trench. The time of runoff passing through the trench became earlier and the volume of runoff became larger with the increase of inflow into the trench, while trench exfiltration into ground became relatively smaller. The results of this study presented above show that infiltration trenches are effective instruments to increase base runoff during dry periods.

Evaluation of reactor pulse experiments

  • I. Svajger;D. Calic;A. Pungercic;A. Trkov;L. Snoj
    • Nuclear Engineering and Technology
    • /
    • v.56 no.4
    • /
    • pp.1165-1203
    • /
    • 2024
  • In the paper we validate theoretical models of the pulse against experimental data from the Jozef Stefan Institute TRIGA Mark II research reactor. Data from all pulse experiments since 1991 have been collected, analysed and are publicly available. This paper summarizes the validation study, which is focused on the comparison between experimental values, theoretical predictions (Fuchs-Hansen and Nordheim-Fuchs models) and calculation using computational program Improved Pulse Model. The results show that the theoretical models predicts higher maximum power but lower total released energy, full width at half maximum and the time when the maximum power is reached is shorter, compared to Improved Pulse Model. We evaluate the uncertainties in pulse physical parameters (maximum power, total released energy and full width at half maximum) due to uncertainties in reactor physical parameters (inserted reactivity, delayed neutron fraction, prompt neutron lifetime and effective temperature reactivity coefficient of fuel). It is found that taking into account overestimated correlation of reactor physical parameters does not significantly affect the estimated uncertainties of pulse physical parameters. The relative uncertainties of pulse physical parameters decrease with increasing inserted reactivity. If all reactor physical parameters feature an uncorrelated uncertainty of 10 % the estimated total uncertainty in peak pulse power at 3 $ inserted reactivity is 59 %, where significant contributions come from uncertainties in prompt neutron lifetime and effective temperature reactivity coefficient of fuel. In addition we analyse contribution of two physical mechanisms (Doppler broadening of resonances and neutron spectrum shift) that contribute to the temperature reactivity coefficient of fuel. The Doppler effect contributes around 30 %-15 % while the rest is due to the thermal spectrum hardening for a temperature range between 300 K and 800 K.

Polynomial model controlling the physical properties of a gypsum-sand mixture (GSM)

  • Seunghwan Seo;Moonkyung Chung
    • Geomechanics and Engineering
    • /
    • v.35 no.4
    • /
    • pp.425-436
    • /
    • 2023
  • An effective tool for researching actual problems in geotechnical and mining engineering is to conduct physical modeling tests using similar materials. A reliable geometric scaled model test requires selecting similar materials and conducting tests to determine physical properties such as the mixing ratio of the mixed materials. In this paper, a method is proposed to determine similar materials that can reproduce target properties using a polynomial model based on experimental results on modeling materials using a gypsum-sand mixture (GSM) to simulate rocks. To that end, a database is prepared using the unconfined compressive strength, elastic modulus, and density of 459 GSM samples as output parameters and the weight ratio of the mixing materials as input parameters. Further, a model that can predict the physical properties of the GSM using this database and a polynomial approach is proposed. The performance of the developed method is evaluated by comparing the predicted and observed values; the results demonstrate that the proposed polynomial model can predict the physical properties of the GSM with high accuracy. Sensitivity analysis results indicated that the gypsum-water ratio significantly affects the prediction of the physical properties of the GSM. The proposed polynomial model is used as a powerful tool to simplify the process of determining similar materials for rocks and conduct highly reliable experiments in a physical modeling test.

Analysis and Usage of Computer Experiments Using Spatial Linear Models (공간선형모형을 이용한 전산실험의 분석과 활용)

  • Park, Jeong-Soo
    • Journal of Korean Society for Quality Management
    • /
    • v.34 no.2
    • /
    • pp.122-128
    • /
    • 2006
  • One feature of a computer simulation experiment, different from a physical experiment, is that the output is often deterministic. Moreover the codes are computationally very expensive to run. This paper deals with the design and analysis of computer experiments(DACE) which is a relatively new statistical research area. We model the response of computer experiments as the realization of a stochastic process. This approach is basically the same as using a spatial linear model. Applications to the optimal mechanical designing and model calibration problems are illustrated. Algorithms for selecting the best spatial linear model are also proposed.

Numerical experiments on the Tsushima Warm Current

  • Nam, Soo-Yong;Suk, Moon-Suk;Chang, Kyung-Il;Seung, Young-Ho
    • Proceedings of the Korean Society of Coastal and Ocean Engineers Conference
    • /
    • 1995.10a
    • /
    • pp.16-19
    • /
    • 1995
  • Effects of the changes in bottom topography and non-linearity of the western boundary current on the separation position of the Tsushima Warm Current(TWC) are investigated using a primitive equation model in a simplified model domain which consists of a deep ocean, a continental shelf and a marginal sea(Fig. 1). (omitted)

  • PDF

Automatic Fruit Grading Using Stacking Ensemble Model Based on Visual and Physical Features (시각적 특징과 물리적 특징에 기반한 스태킹 앙상블 모델을 이용한 과일의 자동 선별)

  • Kim, Min-Ki
    • Journal of Korea Multimedia Society
    • /
    • v.25 no.10
    • /
    • pp.1386-1394
    • /
    • 2022
  • As consumption of high-quality fruits increases and sales and packaging units become smaller, the demand for automatic fruit grading systems is increasing. Compared to other crops, the quality of fruit is determined by visual characteristics such as shape, color, and scratches, rather than just physical size and weight. Accordingly, this study presents a CNN model that can effectively extract and classify the visual features of fruits and a perceptron that classifies fruits using physical features, and proposes a stacking ensemble model that can effectively combine the classification results of these two neural networks. The experiments with AI Hub public data show that the stacking ensemble model is effective for grading fruits. However, the ensemble model does not always improve the performance of classifying all the fruit grading. So, it is necessary to adapt the model according to the kind of fruit.

개별요소법을 이용한 핵석층의 물성 산정 : 화강암질 편마암 지역에 분포하는 핵석층의 예

  • Yu, Seung-Hak;Park, Yeong-Do;Kim, Gi-Seok;Park, Hyeon-Ik;Seo, Yeong-Ho;Park, Yeon-Jun
    • Proceedings of the Korean Society for Rock Mechanics Conference
    • /
    • 2007.03a
    • /
    • pp.130-139
    • /
    • 2007
  • We have carried out numerical compression experiments to estimate the mechanical properties (Mohr-Coulomb and elastic) of corestone-bearing saprolites in Beolgyo area. The studied saprolite, consisting of mechanically much stronger corestone and weaker matrix, is a weathering product of the Precambrian granitic gneiss in the Youngnam massif. Since the saprolite consists of larger corestones with diameter up to 2m, it is impossible to directly measure the mechanical properties by physical experiments. We have measured the mechanical properties of corestone and matrix from naturally occurring saprolite and have used them as a reference for our numerical model. Then, we mixed each material and carried out biaxial compression tests while varying the volume percentage of corestones from 0 to 57%. We found that both cohesion and internal friction angle increase with the volume percentage of corestones while elastic modulus remains constant. We found the results from numerical experiments are in contradiction to what is known from physical experiments using artificial saprolites. This may be due to a possibility that the sharp and discrete nature of interface between corestone and matrix in physical experiments differs from the gradual interfacial nature in numerical modelling and natural saprolites.

  • PDF

Kriging Interpolation Methods in Geostatistics and DACE Model

  • Park, Dong-Hoon;Ryu, Je-Seon;Kim, Min-Seo;Cha, Kyung-Joon;Lee, Tae-Hee
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.5
    • /
    • pp.619-632
    • /
    • 2002
  • In recent study on design of experiments, the complicate metamodeling has been studied because defining exact model using computer simulation is expensive and time consuming. Thus, some designers often use approximate models, which express the relation between some inputs and outputs. In this paper, we review and compare the complicate metamodels, which are expressed by the interaction of various data through trying many physical experiments and running a computer simulation. The prediction model in this paper employs interpolation schemes known as ordinary kriging developed in the fields of spatial statistics and kriging in Design and Analysis of Computer Experiments (DACE) model. We will focus on describing the definitions, the prediction functions and the algorithms of two kriging methods, and assess the error measures of those by using some validation methods.

Research on female consumer responses according to advertising model types of a senior apparel brand (시니어 의류 브랜드의 광고모델 유형에 따른 여성 소비자 반응 연구)

  • Lee, Eungsuk;Yoh, Eunah
    • The Research Journal of the Costume Culture
    • /
    • v.24 no.1
    • /
    • pp.93-106
    • /
    • 2016
  • Study objectives are: 1) to investigate the difference in consumer perceptions of the model's image and physical attractiveness according to advertising model types; 2) to explore the effect of the difference between the model's image and the consumer's self image, the difference between the model's image and the brand's image, and the physical attractiveness of the model on attitude toward the advertising model; and 3) to explore the effect of attitude toward the advertising model on attitude toward the advertisement. A total of 306 female consumers over the age of 45 participated in experiments with advertisement stimuli for a senior apparel brand. Results showed a significant difference in the model's images and physical attractiveness according to each model type. The consumer's attitude toward the advertising model was determined by physical attractiveness of the model, not by the difference between model's image and the consumers' self-image, nor by the difference between the model's image and brand image. Attitude toward advertisements was determined by attitude toward the advertising model. The findings imply that advertising models of a senior apparel brand can be selected based on the physical attractiveness of the model. Consumers do not consider whether the model's image fits well with their self-images or the brand's image when building an attitude toward the advertising model, and this precedes the consumer's attitude toward the advertisement. These results can be used as guidelines to select appropriate models for advertisements of senior apparel brands.

On validation of fully coupled behavior of porous media using centrifuge test results

  • Tasiopoulou, Panagiota;Taiebat, Mahdi;Tafazzoli, Nima;Jeremic, Boris
    • Coupled systems mechanics
    • /
    • v.4 no.1
    • /
    • pp.37-65
    • /
    • 2015
  • Modeling and simulation of mechanical response of infrastructure object, solids and structures, relies on the use of computational models to foretell the state of a physical system under conditions for which such computational model has not been validated. Verification and Validation (V&V) procedures are the primary means of assessing accuracy, building confidence and credibility in modeling and computational simulations of behavior of those infrastructure objects. Validation is the process of determining a degree to which a model is an accurate representation of the real world from the perspective of the intended uses of the model. It is mainly a physics issue and provides evidence that the correct model is solved (Oberkampf et al. 2002). Our primary interest is in modeling and simulating behavior of porous particulate media that is fully saturated with pore fluid, including cyclic mobility and liquefaction. Fully saturated soils undergoing dynamic shaking fall in this category. Verification modeling and simulation of fully saturated porous soils is addressed in more detail by (Tasiopoulou et al. 2014), and in this paper we address validation. A set of centrifuge experiments is used for this purpose. Discussion is provided assessing the effects of scaling laws on centrifuge experiments and their influence on the validation. Available validation test are reviewed in view of first and second order phenomena and their importance to validation. For example, dynamics behavior of the system, following the dynamic time, and dissipation of the pore fluid pressures, following diffusion time, are not happening in the same time scale and those discrepancies are discussed. Laboratory tests, performed on soil that is used in centrifuge experiments, were used to calibrate material models that are then used in a validation process. Number of physical and numerical examples are used for validation and to illustrate presented discussion. In particular, it is shown that for the most part, numerical prediction of behavior, using laboratory test data to calibrate soil material model, prior to centrifuge experiments, can be validated using scaled tests. There are, of course, discrepancies, sources of which are analyzed and discussed.