• Title/Summary/Keyword: Physical field modeling

Search Result 151, Processing Time 0.025 seconds

Physical modeling of dust polarization spectrum by RAT alignment and disruption

  • Lee, Hyeseung;Hoang, Thiem
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.46 no.2
    • /
    • pp.38.1-38.1
    • /
    • 2021
  • Dust polarization depends on the physical and mechanical properties of dust, as well as the properties of local environments. To understand how dust polarization varies with grain mechanical properties and the local environment, in this paper, we model the wavelength-dependence polarization of starlight and polarized dust emission by aligned grains by simultaneously taking into account grain alignment and rotational disruption by radiative torques (RATs). We explore a wide range of the local radiation field and grain mechanical properties characterized by tensile strength. We find that the maximum polarization and the peak wavelength shift to shorter wavelengths as the radiation strength U increases due to the enhanced alignment of small grains. Grain rotational disruption by RATs tends to decrease the optical-near infrared polarization but increases the ultraviolet polarization of starlight due to the conversion of large grains into smaller ones. In particular, we find that the submillimeter (submm) polarization degree at 850㎛(P850) does not increase monotonically with the radiation strength or grain temperature (Td), but it depends on the tensile strength of grain materials. Our physical model of dust polarization can be tested with observations toward star-forming regions or molecular clouds irradiated by a nearby star, which have higher radiation intensity than the average interstellar radiation field. Finally, we compare our predictions of the P850-Td relationship with Planck data and find that the observed decrease of P850 with Td can be explained when grain disruption by RATs is accounted for, suggesting that interstellar grains unlikely to have a compact structure but perhaps a composite one. The variation of the submm polarization with U (or Td)can provide a valuable constraint on the internal structures of cosmic dust

  • PDF

3D simulation of railway bridges for estimating fundamental frequency using geometrical and mechanical properties

  • Moazam, Adel Mahmoudi;Hasani, Nemat;Yazdani, Mahdi
    • Advances in Computational Design
    • /
    • v.2 no.4
    • /
    • pp.257-271
    • /
    • 2017
  • There are many plain concrete arch bridges in Iran that have been used as railway bridges for more than seventy years. Owe to the fact that these bridges have not been designed seismically, and even may be loaded under high-speed trains, evaluation of fundamental frequencies of the bridges against earthquake and high-speed train vibrations is necessary for considering dynamics effects. To evaluate complex behavior of these bridges, results of field tests are useful. Since it is not possible to perform field tests for all arch bridges, these structures should be simulated correctly by computers for structural assessment. Several parameters are employed to describe the bridges, such as number of spans, length of spans, geometrical and material properties. In this study, results of field tests are used for modal analysis and adapted for 64 three dimensional finite element models with various physical parameters. Computer simulations show length of spans has important effect on fundamental frequencies of plain concrete arch bridge and modal deformations of bridges is in longitudinal and transverse directions. Also, these results demonstrate that fundamental frequencies of bridges decrease after increasing span length and number of spans. Plus, some relations based in the number of spans (n) and span length (l) are proposed for calculation of fundamental frequencies of plain concrete arch bridge.

Monte Carlo simulation for the response analysis of long-span suspended cables under wind loads

  • Di Paola, M.;Muscolino, G.;Sofi, A.
    • Wind and Structures
    • /
    • v.7 no.2
    • /
    • pp.107-130
    • /
    • 2004
  • This paper presents a time-domain approach for analyzing nonlinear random vibrations of long-span suspended cables under transversal wind. A consistent continuous model of the cable, fully accounting for geometrical nonlinearities inherent in cable behavior, is adopted. The effects of spatial correlation are properly included by modeling wind velocity fluctuation as a random function of time and of a single spatial variable ranging over cable span, namely as a one-variate bi-dimensional (1V-2D) random field. Within the context of a Galerkin's discretization of the equations governing cable motion, a very efficient Monte Carlo-based technique for second-order analysis of the response is proposed. This procedure starts by generating sample functions of the generalized aerodynamic loads by using the spectral decomposition of the cross-power spectral density function of wind turbulence field. Relying on the physical meaning of both the spectral properties of wind velocity fluctuation and the mode shapes of the vibrating cable, the computational efficiency is greatly enhanced by applying a truncation procedure according to which just the first few significant loading and structural modal contributions are retained.

Influence of Adjacent Structures on Surface-Wave Dispersion Characteristics and 2-D Resistivity Structure (표면파 분산특성과 전기비저항 분포특성에 대한 인접구조물의 영향)

  • Joh, Sung-Ho;Kim, Bong-Chan;Cho, Mi-Ra;Kim, Suhk-Chol;Youn, Dae-Hee;Hong, Jae-Ho
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.1318-1327
    • /
    • 2008
  • Geotechnical sites in urban areas may have embedded structures such as utility lines and underground concrete structures, which cause difficulties in site investigation. This study is a preliminary research to establish knowledge base for developing an optimal technique for site investigation in urban areas. Surface-wave method and resistivity survey, which are frequently adopted for non-destructive site-investigation for geotechnical sites, were investigated to characterize effects of adjacent structures. In case of surface wave method, patterns of wave propagation were investigated for typical sets of multi-layered geotechnical profiles by numerical simulation based on forward modeling theory and field experiments for small-size model tests and real-scale tests in the field. In case of resistivity survey, 3-D finite element analyses and field tests were performed to investigate effects of adjacent concrete structures. These theoretical and experimental researches for surface-wave method and resistivity survey resulted in establishing physical criteria to cause interference of adjacent structures in site investigation at urban areas.

  • PDF

3D Facial Modeling and Synthesis System for Realistic Facial Expression (자연스러운 표정 합성을 위한 3차원 얼굴 모델링 및 합성 시스템)

  • 심연숙;김선욱;한재현;변혜란;정창섭
    • Korean Journal of Cognitive Science
    • /
    • v.11 no.2
    • /
    • pp.1-10
    • /
    • 2000
  • Realistic facial animation research field which communicates with human and computer using face has increased recently. The human face is the part of the body we use to recognize individuals and the important communication channel that understand the inner states like emotion. To provide the intelligent interface. computer facial animation looks like human in talking and expressing himself. Facial modeling and animation research is focused on realistic facial animation recently. In this article, we suggest the method of facial modeling and animation for realistic facial synthesis. We can make a 3D facial model for arbitrary face by using generic facial model. For more correct and real face, we make the Korean Generic Facial Model. We can also manipulate facial synthesis based on the physical characteristics of real facial muscle and skin. Many application will be developed such as teleconferencing, education, movies etc.

  • PDF

A Method of Tunnel Information Modeling Reflecting Curved Alignment and Model-based Information Management using IFC Data Schema (곡선 선형을 반영한 터널 정보모델링 및 IFC 데이터 스키마를 활용한 모델기반의 정보관리 방안)

  • Jang, Seong Geun;Kwon, Tae Ho;Park, Sang I.;Lee, Sang-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.6
    • /
    • pp.549-557
    • /
    • 2017
  • In order to improve the productivity in the civil engineering field, efforts to apply BIM have been continuing, however, research on information modeling of tunnel structures considering alignment is insufficient. In this study, we proposed the method of building tunnel models reflecting curved alignment by transferring point data to BIM Authoring Tools(BAT) through discretization of alignment in Alignment-centered Modeling Tools(AMT). IFC data schema was derived to consider the physical and spatial elements of tunnel structures and alignment and IFC-based information management for tunnel alignment, tunnel structures and ground conditions was possible by referring to the extended data schema and including meanings in IFC property sets. The ratings for ground condition in Rock Mass Rating(RMR) and Q-system was automatically derived by using generated information model according to the proposed method.

The Research of Beach Deformation after Construction of the Jetties

  • Park, Sang-Kil;Han, Chong-Soo;Roh, Tae-Young;Park, O-Young;Ahn, Ik-Seong;Lee, Ji-Hun
    • International Journal of Ocean System Engineering
    • /
    • v.1 no.4
    • /
    • pp.185-191
    • /
    • 2011
  • This research was described the prevention of coastal topographical change and sediment diffusive concentration incoming from small estuary after construction jetties. This structure is constructed to decrease sediment deposition incoming from the upstream river due to the urbanization and industrial development and to minimize effects on the coastal ecosystem. The physical modeling and numerical modeling for waves were conducted to analyze the configuration of Imrang sand beach deformation without and with construction of jetty. The specification of the installed jetty, which is able to control sedimentation concentration was decided based on the prediction of the Imrang beach area changes by space and time. As a result, the jetties constructed in the estuary retarded the rate of sand sediment, so that the effect area of sand sedimentation was obviously decreased. In addition, the measured field data indicated that the sediment deposition inside of dikes could be controlled and the right side area of jetties could be preserved without sediment deposition.

Hydrodynamic Modeling for Discharge Analysis in a Dielectric Medium with the Finite Element Method under Lightning Impulse

  • Lee, Ho-Young;Lee, Se-Hee
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.3
    • /
    • pp.397-401
    • /
    • 2011
  • The response of lightning impulse voltage was explored in dielectric liquids employing hydrodynamic modeling with three charge carriers using the finite element method. To understand the physical behavior of discharge phenomena in dielectric liquids, the response of step voltage has been extensively studied recently using numerical techniques. That of lightning impulse voltage, however, has rarely been investigated in technical literature. Therefore, in this paper, we tested impulse response with a tip-sphere electrode which is explained in IEC standard #60897 in detail. Electric field-dependent molecular ionization is a common term for the breakdown process, so two ionization factors were tested and compared for selecting a suitable coefficient with the lightning impulse voltage. To stabilize our numerical setup, the artificial diffusion technique was adopted, and finer mesh segmentation was generated along with the axial axis. We found that the velocity from the numerical result agrees with that from the experimental result on lightning impulse breakdown testing in the literature.

Model-Based Prediction of Pulsed Eddy Current Testing Signals from Stratified Conductive Structures

  • Zhang, Jian-Hai;Song, Sung-Jin;Kim, Woong-Ji;Kim, Hak-Joon;Chung, Jong-Duk
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.31 no.6
    • /
    • pp.609-615
    • /
    • 2011
  • Excitation and propagation of electromagnetic field of a cylindrical coil above an arbitrary number of conductive plates for pulsed eddy current testing(PECT) are very complex problems due to their complicated physical properties. In this paper, analytical modeling of PECT is established by Fourier series based on truncated region eigenfunction expansion(TREE) method for a single air-cored coil above stratified conductive structures(SCS) to investigate their integrity. From the presented expression of PECT, the coil impedance due to SCS is calculated based on analytical approach using the generalized reflection coefficient in series form. Then the multilayered structures manufactured by non-ferromagnetic (STS301L) and ferromagnetic materials (SS400) are investigated by the developed PECT model. Good prediction of analytical model of PECT not only contributes to the development of an efficient solver but also can be applied to optimize the conditions of experimental setup in PECT.

Physical Habitat Modeling in Dalcheon Stream Using Fuzzy Logic (퍼지논리를 이용한 달천의 물리서식처 모의)

  • Jung, Sang-Hwa;Jang, Ji-Yeon;Choi, Sung-Uk
    • Journal of Korea Water Resources Association
    • /
    • v.45 no.2
    • /
    • pp.229-242
    • /
    • 2012
  • This study presents a physical habitat modeling of adult Zacco platypus in a reach of the Dalcheon Stream located downstream of the Goesaan Dam. CASiMiR model is used to estimate habitat suitability index based on the fuzzy logic. Results are compared with those from River2D model, which uses habitat preference curve for habitat suitability index. Hydraulic data simulated by River2D are used as input data for CASiMiR model after verification against field measurements. The result shows that the habitat suitability of the adult Zacco platypus is maximum around the riffle area located upstream of the bend. CASiMiR and River2D estimate the maximum weighted usable areas at the discharge rates of 7.23 $m^3/s$ and 9.0 $m^3/s$, respectively. Overall comparison of the two models employed in this study indicates that CASiMiR model overestimates the weighted usable area by 0.3~25.3% compared with River2D model in condition of drought flow (Q355), low flow (Q275), normal flow (Q185), and average-wet flow (Q95).