• Title/Summary/Keyword: Physical adsorption

Search Result 480, Processing Time 0.028 seconds

Physical Properties of Activated Carbon with Coal Blend Ratios and Manufacturing Conditions (석탄배합비율과 제조공정조건에 따른 활성탄의 물성변화)

  • Kim, Sang Cheol;Park, Kyung Ai;Lee, Seung Bum;Hong, In Kwon
    • Applied Chemistry for Engineering
    • /
    • v.9 no.6
    • /
    • pp.835-841
    • /
    • 1998
  • This study was devoted to the manufacturing process of activated carbon(AC) using and anthracite and bituminous coals which were regarded as appropriate for AC manufacturing, and the physcial properties a AC prepared with coal blends were characterized by the ultimate and proximate analysis. Generally, as the fraction of antheracite in AC from anthracite and bituminous coal blends was increased, AC yield was increased whereas iodine value($I_2$) was decreased. Being not related to mixing ratio of coal blends, the apparent density of AC remained constant. Pore development and iodine value of AC based on coal blends(Fushun and Dandong, 75:25 wt. %) were examined, varing carbonization and steam activation conditions. These results showed that the average pore diameter of AC was below $20{\AA}$ in the activation temperature range of 850 to $900^{\circ}C$ and the iodine value was above $1000m^2/g$. When the adsorption capacity of manufactured AC was compared with commercial AC, it is found that the AC from coal blends was comparable to the commercial AC. Therefore, it was confirmed that the characteristics of manufactured AC were changed with manufacturing conditions and the ratios and types of coal blends.

  • PDF

Removal of Harmful Gas with Wood or Bark Charcoal (목질 및 수피탄화물에 의한 기상 유해가스 흡착제거)

  • Jo, Tae-Su
    • Journal of the Korean Wood Science and Technology
    • /
    • v.36 no.6
    • /
    • pp.69-76
    • /
    • 2008
  • To estimate removal ability of harmful gas by charcoal, we carbonized Red oak (Quercus mongolica Fischer) wood and Larch (Larix leptoepis) bark at $300^{\circ}C$, $600^{\circ}C$ and $900^{\circ}C$ for 1 hour. Gas removal ratios was increased with carbonization temperature but there is no difference between wood and bark charcoal. In the case of bad smell and VOC gas, woody charcoal including bark charcoal carbonized at $300^{\circ}C$ showed low removal ratio, less than 50%, whereas woody charcoals which was carbonized at more than $600^{\circ}C$ reached almost 100% removal ratio to bad smell gas such as trimethylamine, methymercaptan, hydrogen sulfide, and to VOC such as benzene, toluene, xylene in $5{\ell}$ tedler bag with each gas of 100 ppm. It was thought that because charcoals carbonized at high temperature, for example, $600^{\circ}C$ or $900^{\circ}C$ have enough specific surface area to adsorb gas of 100 ppm. Moreover these charcoals rapidly removed almost gas in 10 minutes. However, acetylene, $SO_2$ and $NO_2$, charcoals which was carbonized more than $600^{\circ}C$ and which showed high removal ratio had low gas removal ratio of 40% at even 4 hours adsorption. It was concluded that adsorptive ability of woody charcoal was mainly influenced with carbonizing temperature, so that different charcoals carbonized at different temperature brings different gas removal ratio because these charcoals have not only different physical factor such as specific surface area but different chemical characteristic such as functional group, expected.

Relationship among Physical & Chemical Properties of Supports and Performance of Methane Fermentation in Anaerobic Fluidized-Bed Reactor (혐기성 유동층 반응기에서 지지체의 물리.화학적 특성과 메탄 발효 성능 사이의 관계)

  • 조무환;남영섭정재학김정목
    • KSBB Journal
    • /
    • v.8 no.5
    • /
    • pp.431-437
    • /
    • 1993
  • Active carbon which has the smallest bulk and wet density was found as the best support media among 4 different kinds of materials(celite, natural zeolite, Pusuk stone, active carbon) to make a proper fluidized-bed with small energy consumption. Its minimum and optimum fluidization velocity were found as 0.03cm/sec and 0.25cm/sec, respectively. As organic loading rate for methane fermentation was increased, CODcr removal efficiencies of all the media were decreased. But, CODcr, removal efficiencies of active carbon was maintained more than 90% in this experimental range of the organic loading rate. Larger amount of microorganism was adsorbed on the active carbon which has very high specific surface area. At the organic loading rate of 16g CODcr,/l day, its adsorbed cell mass was 157mg/g. Comparing natural zeolite with roast celite, adsorbed cell mass did not increase in proportion to specific surface area of the media. Even though roast celite has the same specific surface area as the Pusuk stone, its organic removal ability was superior to that of the Pusuk stone, which explains that the relatively great surface roughness and the positive surface charge are important for cell adsorption. It was concluded that the support media for anaerobic fluidized reactor should have small wet density and small fuidization velocity, if possible, in order to increase cell adsorption by reducing the fluid shear stress.

  • PDF

Hydrogen Storage and Release Properties for Compacted Ti-Mn Alloy (컴팩션된 Ti-Mn계 합금의 수소저장 및 방출 특성)

  • KIM, JONG SEOK;HAN, WON BI;CHO, HYUN SUK;JEONG, MOON SUN;JEONG, SEONG UK;CHO, WON CHUL;KANG, KYOUNG SOO;KIM, CHANG HEE;BAE, KI KWANG;KIM, JONG WON;PARK, CHU SIK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.1
    • /
    • pp.9-16
    • /
    • 2017
  • Hydrogen forms metal hydrides with some metals and alloys leading to solid-state storage under moderate temperature and pressure that gives them the safety advantage over the gas and liquid storage methods. However, it has disadvantages of slow hydrogen adsorption-desorption time and low thermal conductivity. To improve characteristics of metal hydrides, it is important that activation and thermal conductivity of metal hydrides are improved. In this study, we have been investigated hydrogen storage properties of Hydralloy C among Ti-Mn alloys. Also, the characteristics of activation and thermal conductivity of Hydralloy C were enhanced to improve kinetics of hydrogen adsorption-desorption. As physical activation method, PHEM (planetary high energy mill) was performed in Ar or $H_2$ atmosphere. Hydralloy C was also activated by $TiCl_3$ catalyst. To improve thermal conductivity, various types of ENG (expanded natural graphite) were used. The prepared samples were compacted at pressure of 500 bar. As a result, the activation properties of $H_2$ PHEM treated Hydralloy C was better than the other activation methods. Also, the amounts of hydrogen storage showed up to 1.6 wt%. When flake type ENG was added to Hydralloy C, thermal conductivity and hydrogen storage properties were improved.

Column Tests for the Design of PRB System using CFW (음식폐기물 탄화재로 충진된 PRB설계법 제안을 위한 컬럼실험)

  • Han, Jung-Geun;Yoon, Won-Il;Jung, Dong-Ho;Kim, Yong-Soo;Lee, Jong-Young
    • Journal of the Korean Geosynthetics Society
    • /
    • v.10 no.2
    • /
    • pp.35-43
    • /
    • 2011
  • Permeable Reactive Barriers (PRB) method is an economical method that does not require any other methods to be operated once it is installed as it controls of groundwater flow in the barrier, which is inserted a reactive material on the way of pollutant. The major dominant element of PRB is a reactive material in the reactive wall, and such factors as purification efficiency and used time based on the chemical and physical features in between the reactant and pollutant. High purification efficiency can be expected when a rational design that is synthetically considered in features of packing density, operation period, and adsorption reactant of pollutant. A column test was conducted for an application test using CFW as its adsorption reactant in order to remove copper($Cu^{2+}$) in the PRB system. The CFW was used for the reactant and selected inflow speed, density and thickness of PRB as its necessary factors for design of PRB. As a result of the experiment, the removal efficiency decreased as operating time of PRB increased and the efficiency linearly increased upon the length. Therefore, it is confirmed that the thickness of reactive materials in PRB system can be designed using the proposed formula considering purification time and density of CFW.

Studies on the Characteristics of Mineral Diluents Affecting the Decomposition of Sumithion in the Dust formulations (Sumithion 분제의 성분 변화에 영향을 미치는 증량제의 특성에 관한 연구)

  • Wuh K. D.;Han S. S.;Keum S. S.;Ahn S. H.;Lee C. N.
    • Korean journal of applied entomology
    • /
    • v.10 no.2
    • /
    • pp.77-83
    • /
    • 1971
  • In order to find out the decomposing factors of Sumithion in mineral diluents, the physical and chemical properties of the diluents such as talcs, bentonites, diatomaceous earth and other clay minerals was studied in relation to the decomposition rate of Sumithion in dust formulations. The total base, moisture adsorption capacity, pH, specific surface, water contents, active $Fe^{++}$, ignition loss and cation exchange capacity were analysed as the properties of mineral diluents, and these properties were correlated with the stability of Sumithion in dust formulations. And in hope of finding out the main factors among those properties of diluents, the decomposed products of Sumithion in dust formulations prepared with standard Sumithion were separated by the methods of column chromatography and investigated by thin layer chromatography. The following results were otbained; 1. The total base, moisture adsorption capacity, specific surface, water contents, active $Fe^{++}$ and cation exchange capacity of mineral diluents were found to be highly effective on the rate of decomposition of Sumithion in dust formulations. 2. Decomposed products of Sumithion in dust formulations were found to be dimethylphosphorothionate, 3-methyl-4-nitro phenol and its derivatives. And one fraction was not dissolved in n-hexane and ethylether, but was soluble in methylalcohol and ethylalcohol. 3. The moat highly correlated properties of diluents with the decomposition rate of Sumithion in dust were found to be the total base and water contents. 4. In regard to the kind of diluents, it was found that the rate of decomposition of Sumithion in dust formulations was higher in order of bentonite, diatomaceous earth, kaolin and talc.

  • PDF

A Study on the Removal of Cu and Fe Impurities on Si Substrate (Si 기판에서 구리와 철 금속불순물의 제거에 대한 연구)

  • Choi, Baik-Il;Jeon, Hyeong-Tag
    • Korean Journal of Materials Research
    • /
    • v.8 no.9
    • /
    • pp.837-842
    • /
    • 1998
  • As the size of the integrated circuit is scaled down the importance of Si cleaning has been emphasized. One of the major concerns is abut the removal of metallic impurities such as Cu and Fe on Si surface. In this study, we intentionally contaminated Cu and Fe on the Si wafers and cleaned the wafer by cleaning splits of the chemical mixture of $\textrm{H}_2\textrm{O}_2$ and HF and the combination of HF treatment with UV/$\textrm{O}_3$ treatment. The contamination level was monitored by TXRF. Surface microroughness of the Si wafers was measured by AFM. The Si wafer surface was examined by SEM. AES analysis was carried out to analyze the chemical composition of Cu impurities. The amount of Cu impurities after intentional contamination was abut the level of $\textrm{10}^{14}$ atoms/$\textrm{cm}^2$. The amount of Cu was decreased down to the level of $\textrm{10}^{10}$ atoms/$\textrm{cm}^2$ by cleaning splits. The repeated treatment exhibited better Cu removal efficiency. The surface roughness caused by contamination and removal of Cu was improved by repeated treatment of the cleaning splits. Cu were adsorbed on Si surface not in a thin film type but in a particle type and its diameter was abut 100-400${\AA}$ and its height was 30-100${\AA}$. Cu was contaminated on Si surface by chemical adsorption. In the case of Fe the contamination level was $\textrm{10}^{13}$ atoms/$\textrm{cm}^2$ and showed similar results of above Cu cleaning. Fe was contaminated on Si surface by physical adsorption and as a particle type.

  • PDF

Soil Washing and Effluent Treatment for Contaminated Soil with Toxic Metals (유해원소로 오염된 토양 세척 및 세척수의 처리)

  • Yang, Jung-Seok;Hwang, Jin-Min;Baek, Kitae;Kwon, Man Jae
    • Korean Chemical Engineering Research
    • /
    • v.51 no.6
    • /
    • pp.745-754
    • /
    • 2013
  • This study evaluated the optimal soil washing conditions for toxic metals considering the removal efficiency of toxic metals from contaminated soils as well as from soil washing effluents. In the contaminated soils, As was the major contaminant and extracted by sodium hydroxide solution better than by sulfuric acid. However, in the case of the treatment of soil washing effluents, sodium hydroxide was less effective extractant because soil organic matter extracted by sodium hydroxide prevented the solid-liquid phase separation and toxic metal removal. In the treatment of soil washing effluents with sulfuric acid, toxic metals in the effluents were mostly precipitated at the pH above 6.5. In addition, granular ferric oxide (GFO) as an adsorbent enhanced the removal of As and Pb indicating that toxic metals in the washing effluents can be removed almost completely by the use of combined adsorption-neutralization process. This study suggests that soil washing techniques for toxic metals should be optimized based on the physical and chemical properties of the contaminated soils, the nature of chemical extractant, and the removal efficiency and effectiveness of toxic metals from the soils as well as soil washing effluents.

A Thermal Study of the Harmful Chemical Species of Charcoal and Their Transformation during Combustion (숯의 유해물질과 이들의 연소 중 상변화에 대한 열분석 연구)

  • Yoon, Hye-On;Kim, Ki-Hyun
    • Journal of the Mineralogical Society of Korea
    • /
    • v.24 no.2
    • /
    • pp.101-110
    • /
    • 2011
  • Charcoal burning in the process of manufacture and ordinary use often release many constituent chemical species. As a result of open burning, the chemical composition as well as the physical properties of original material changes through the modification of surface properties of charcoal. Surface modification could be more responsible toward the outside elements for surface adsorption, it becomes easy to adsorb more toxic elements through surface adsorption. In this study, four kinds of commercially available charcoal were studied against the chemical and thermal stability along with the heavy metals and organic hazardous substances. Thermo gravimetric analysis (TGA) and differential scanning calorimetry, from room temperature to $400^{\circ}C$, were performed to study the weight loss and the changes in the behavior of those substances. According to TGA analysis, about 10% of weight loss was happened before $200^{\circ}C$. It was found that related weight loss of this temperature region may responsible to the gas phase organic matter. Natural charcoal, K1 and C1 show 15% of loss during the reaction heated to $400^{\circ}C$, while the artificial charcoal K2, C2 show the weight loss of about 20% was found. This is consistent with the main organic matter and VOC analysis results shown. Chemical composition based on the x-ray diffraction analysis was carried out. X-ray diffraction analysis reveals the existence of chemical additive in the forms of $Ba(NO_3)_2$, $BaCO_3$, and $NaNO_3$.

Dietary Fiber in Godulbaegi(Korean Lettuce, Ixeris sonchifolia H.) Kimchi (고들빼기김치 식이섬유질의 식품학적인 특성)

  • Hong-Soo Ryu;Eun-Young Hwang;Soon-Sil Chun;Kun-Young Park
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.24 no.3
    • /
    • pp.404-408
    • /
    • 1995
  • The effect of processing conditions on the changes in the contents of dietary fiber fractions and its physical properteis of Godulbaegi(Korean lettuce, Ixeris sonchifolia H.) was determined during preparation and fementation for kimchi. Water holding capacity(WHC) and oil adsorption capacity(OAC) were also checked on the subject of freeze dried powder from different stages of the kimchi processing. Neutral detergent fiber(NDF) content in young samples(leaf and root) decreased with prolonged soaking and fermentation period. Every young samples had a higher level in NDF than in ripe samples. Noticeable decrease in acid detergent fiber(ADF) without a change in ripe roots was showed after fermentation($4^{\circ}C$, 60 days). The water holding capacity of freeze dried young plants ranged from 5.78ml/g for roots to 6.31ml/g for leaves. Soaking and fermentation resulted in decreasing WHC and about 50% of WHC(raw leaves) was lowered after kimchi fermentation($4^{\circ}C$, 40 days). OAC of all samples were lower than WHC in same samples significantly and those were also decreased after soaking and fermentations as WHC.

  • PDF