• Title/Summary/Keyword: Physical Mode

Search Result 675, Processing Time 0.03 seconds

Study of Child Personality and Kinetic Family Drawing Respondent Characteristic (아동의 성격과 동작성 가족화 반응특성 연구)

  • Kang, Young-Ja;Kim, Yun-Hee
    • Korean Journal of Human Ecology
    • /
    • v.8 no.2
    • /
    • pp.255-273
    • /
    • 1999
  • The purpose of this study was to examine the relationship between characteristics of personality and respondent characteristics of Kinetic Family Drawing for young children. The subjects were 170 children(110 boys and 60 girls). The personal interview contained Personality Characteristic Test for young children(In-Sub Song, 1993) and Kinetic Family Drawing Test(Burns and Kaufman, 1982). Results of the test were analyzed by t-test and ANOVA by SAS program. Results are followings. First, chileren's sex and the general tendency of personal characteristic showed significant difference in the emotional personality among 4 personality characteristics. Girls show more positive tendency than boys in moral, physical, appearance and feature which expressed personal feeling and emotion. Also, girls showed more positive tendency than boys in personal characteristic which showed physical ability. Second, Children's sex and individual characteristic in Kinetic Family Drawing respondent characteristic showed significant difference in own's arm length. Also, Using a rare of paper and chapter 1 of the power among the family showed significant difference in styles and symbols. The boys drew lengther arms compared with their height than the girls. The girls were less complicative, anxious, comparative and aggressive for their family. Third, As a result of the study about the relationship between 4 personal characteristics of children and individual's behavior in Kinetic Family Drawing respondent characteristic, the significant difference is showed in academic personality and social personality had higher completion of their father's feature and drew bigger feet. In socal personality, negative behavior than positive children. Fourth, As a result of the study about the relationship between 4 personal characteristics of children and individual's characteristic, the significant difference were found in academic personality, social personality, family personality and emotional personality. Children with negative academic personality drew longer arms than children with positive academic personality, social personality and family personality. Also, Children with negative emotional personality drew more siblings than children with positive emotional personality. Fifth, The academic personality and the social personality had significant difference in the relationship between 4 personal characteristics of children and dynamics. In social personality, normal children were more tendencious to look at the important person with their mother's direction than positive children. Sixth, In terms of the relationship between 4 personal characteristics of children and mode, academic personality and family personality showed significant difference. Children with negative academic personality used more edge of papers than children with positive academic personality and children with positive academic personality and children with negative family personality fold more papers than children with positive family personality. At last, there were no significant difference between 4 personal characteristics of children and styles as well as symbols.

  • PDF

Resonance Frequency Analysis of A Baseball Bat by Impact Angle (가진 각도에 따른 야구배트의 공진주파수 분석)

  • Park, Sun-Hyang;Chung, Woo-Yang;Jung, Hwan-Hee;Lee, Sang-Joon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.43 no.6
    • /
    • pp.777-783
    • /
    • 2015
  • Wood is an anisotropic material that shows the changes in hardness, quality and dimensions depending on the types of cells on three cross sections, size, array and so on. It can also be used in different ways according to its use, which requires a meticulous research, in order to maximize the utilization by understanding the nature and use; and by clarifying the theory and technologies. The research on relationship among wood's physical properties, density, and elasticity of modulus have been studied in Korea and abroad, but those studies were based on correlation gained through standardized specimen. Rather, the study on complete product is rare. Moreover, the previous reports are mostly concentrating on vibration mode and batting, though the wood's physical properties as a material have not been in the main focus. Therefore, this study will carried out for analyzing MOE through figuring material property out and comparing frequency adapting to the Canadian HardMaple bat. For comparison of material properties, we studied the annual ring and density of the bat; calculated the MOE with resonance frequency and formula (ASTM C1259); and verified the repulsive force of this material. As a result, the relevance of the resonance frequency and annual ring is weak, and in comparison in the grain direction in wood, the MOE value is higher when the grain direction in wood is excited horizontally than when is excited vertically, because the material is repulsive when grain direction is horizontal.

The Methodology for Prediction and Control of Hazardous Chlorine Gas Flow Releases as Meteorological Data (기상조건에 따른 유해독성염소가스의 가상흐름누출에 관한 예측 및 제어론)

  • Kim, Jong-Shik;Park, Jong-Kyu
    • Applied Chemistry for Engineering
    • /
    • v.10 no.8
    • /
    • pp.1155-1160
    • /
    • 1999
  • The screening methodology modeling, dispersion modeling procedures for continuous and instantaneous releases of the gas phase flow from the storage tank and pressure relief valve were considered. This study was performed to develop the screening methodology for prediction and control of hazardous/toxic gas releases by estimating the 1-hr average maximum ground-level concentration of $Cl_2$ gas vs. downwind distance by incorporating source term model including the general/physical properties of released material and release mode of the $Cl_2$ storage tank of the chemical plant facilities, dispersion model, and meteorological/topographical data into the TSCREEN model. As the results of the study, it was found that dispersion modes of the dense gas were affected by the state of the released material, the released conditions, physical-chemical properties of released material, and the released modes (continuous and instantaneous releases), and especially largely affected by initial (depressurized) density of the released material and release emission rate as well as the wind velocity. Especially, this study was considered to release hazardous material as meteorological data. It was thought that this screening methodology can be useful as a preliminary guideline for application of the refined analysis model by developing the generic sliding scale methodology for various senarios selected.

  • PDF

Physical and Mechanical Properties of Phyllostachys pubescens According to Growth Age or Felling Time (죽령 및 벌채시기에 따른 맹종죽재의 물리적ㆍ기계적 특성)

  • 안상열;신훈재;변희섭;박상범;공영토
    • Journal of Korea Foresty Energy
    • /
    • v.22 no.1
    • /
    • pp.8-16
    • /
    • 2003
  • The Phyllostachys pubescens planted in the Nambu forest Experiment was used for this study. The growth ages of the P. pubescens were 1, 2 and 3 years, respectively. The experiment was carried out every month in between June of 2001 and May of 2002. The p. pubescens were divided into upper, middle and lower parts according to the growing points. The static modulus of elascity($MOE_d$) and dynamic modulus of elascity($MOE_d$) were investigated for the physical and mechanical properties of the P. pubescens. The density, MOEs and $MOE_d$according to the growing points were highest in the upper part of the P. pubescens. Generally, density and MOEs and $MOE_d$ of the P pubescens for 3 years grows larger every month. However, moisture content, MOEs and $MOE_d$ of the P. pubescens for 1, 2 years had nothing to do with growth ages and felling time. In the case of the relationships between average MOEs and $MOE_d$ the correlation coefficient was 0.88 in between June of 2001 and May of 2002. Also, $MOE_d$ showed about 18.5% higher than MOEs. Generally, the equally expressed in research that was known that $MOE_d$ of wood is higher than MOEs of wood. Therefore, the $MOE_d$ using a resonance frequency mode is useful as a nondestructive evaluation(NDE) method for predicting the MOE of the P. pubescens.

  • PDF

Effects of Different Exercise Training Mode on Exercise Specificity and Transability (트레이닝 형태의 차이가 운동 특이성(exercise specificity)과 전사효과(transability)에 미치는 영향)

  • Kim, Young-Il;Kwak, Yi-Sub
    • Journal of Life Science
    • /
    • v.19 no.7
    • /
    • pp.968-975
    • /
    • 2009
  • The purpose of the present study was to examine effects of different exercise training modes (Aerobic Training, Resistance Training) on exercise specificity and transability. The tested subjects, composed of 10 healthy males without known family history or medical illnesses, were divided into two groups: Aerobic Training Group (ATG; n=5) and Resistance Training Group (RTG; n=5). An aerobic training program, based on maximum oxygen consumption rates taken during standard testing, was conducted in 60 minute sessions 3 times a week, and the Heart Rate Reserve (HRR) at 70% of maximum oxygen consumption rate was measured the using Polar. In the weight training program, based on repetition maximum rate (1-RM) taken during standard testing, the weight at 70% of such rates was measured during 60 minute sessions of 7 categories of exercise (Bench press, Leg press, Squat, Shoulder press, Arm curt Lat pull down, Triceps pull down), conducted 3 times a week. The data collected from this research were calculated to obtain average and differences compared to standards using an SPSS 11.0 statistics package. In conclusion, increase in V0$_{2max}$ and production of NO$_x$ (NO$_2$/NO$_3$), reduction of %fat, MAPwere shown effective in aerobic training and in different exercise tests, and aerobic testing within the aerobic training group (ATG) was shown to be more effective. In contrast, resistance training was shown to be more effective for the reduction of CK and LDH, and even in different tests, the resistance test within the resistance training group (RTG) showed to be more effective. Exercise specificity also significantly increased in both groups (ATG, RTG). but there was no significant difference in transability in both groups (ATG, RTG).

Study on Equillibrium, Kinetic, Thermodynamic Parameters for Adsorption of Brilliant Green by Zeolite (제올라이트에 의한 Brilliant Green의 흡착에 대한 평형, 동역학 및 열역학 파라미터에 관한 연구)

  • Lee, Jong Jib
    • Korean Chemical Engineering Research
    • /
    • v.56 no.1
    • /
    • pp.112-118
    • /
    • 2018
  • Adsorption equilibrium, kinetic and thermodynamic parameters of a brilliant green from aqueous solutions at various initial dye concentration (10~30 mg/L), contact time (1~24 h) and temperature (298~318 K) on zeolite were studied in a batch mode operation. The equilibrium adsorption values were analyzed by Langmuir, Freundlich and Dubinin-Radushkevich model. The results indicate that Langmuir and Freundlich model provides the best correlation of the experimental data. Base on the estimated values of Langmuir dimensionless separation factor ($R_L=0.041{\sim}0.057$) and Freundlich constant (1/n=0.30~0.47), this process could be employed as effective treatment method. calculated values of adsorption energy by Dubinin-Radushkevich model were 1.564~1.857 kJ/mol corresponding to physical adsorption. The adsorption kinetics of brilliant green were best described by the pseudo second-order rate model and followed by intraparticle diffusion model. Thermodynamic parameters such as activation energy, free energy, enthalpy and entropy were calculated to estimate nature of adsorption. negative Gibbs free energy (-10.3~-11.4 kJ/mol), positive enthalpy change (49.48 kJ/mol) and Arrehenius activation energy (27.05 kJ/mol) indicates that the adsorption is spontaneous, endothermic and physical adsorption process, respectively.

Improvement of the Beam-Wave Interaction Efficiency Based on the Coupling-Slot Configuration in an Extended Interaction Oscillator

  • Zhu, Sairong;Yin, Yong;Bi, Liangjie;Chang, Zhiwei;Xu, Che;Zeng, Fanbo;Peng, Ruibin;Zhou, Wen;Wang, Bin;Li, Hailong;Meng, Lin
    • Journal of the Korean Physical Society
    • /
    • v.73 no.9
    • /
    • pp.1362-1369
    • /
    • 2018
  • A method aimed at improving the beam-wave interaction efficiency by changing the coupling slot configuration has been proposed in the study of extended interaction oscillators (EIOs). The dispersion characteristics, coupling coefficient and interaction impedance of the high-frequency structure based on different types of coupling slots have been investigated. Four types of coupled cavity structures with different layouts of the coupling slots have been compared to improve the beam-wave interaction efficiency, so as to analyze the beam-wave interaction and practical applications. In order to determine the improvement of the coupling slot to a coupled cavity circuit in an EIO, we designed four nine-gap EIOs based on the coupled cavity structure with different coupling slot configurations. With different operating frequencies and voltages takes into consideration, beam voltages from 27 to 33 kV have been simulated to achieve the best beam-wave interaction efficiency so that the EIOs are able to work in the $2{\pi}$ mode. The influence of the Rb and the ds on the output power is also taken into consideration. The Rb is the radius of the electron beam, and the ds is the width of the coupling slot. The simulation results indicate that a single-slot-type EIO has the best beam-wave interaction efficiency. Its maximum output power is 2.8 kW and the efficiency is 18% when the operating voltage is 31 kV and electric current is 0.5 A. The output powers of these four EIOs that were designed for comparison are not less than 1.7 kW. The improved coupling-slot configurations enables the extended interaction oscillator to meet the different engineering requirements better.

Analysis of Long-term Stability of Direct Methanol Fuel Cell and Investigation of the Methods to Improve its Performance (직접메탄올 연료전지의 장기운전 특성 분석 및 성능향상 연구)

  • Lee, Hyun-Sook;Bae, Byung-Chan;Lee, Jae-Young;Im, Tae-Hun;Ha, Heung-Yong;Hong, Seong-Ahn
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.16 no.1
    • /
    • pp.31-39
    • /
    • 2005
  • Direct methanol fuel cell (DMFC) is considered as a candidate for portable power sources, that could overcome the disadvantages of lithium battery. But in order to attain commercial viability the long term stability of the DMFC should be achieved. Understanding the long-term behavior of membrane-electrode assembly (MEA) is a prerequisite to this purpose and the optimization of the MEA is also needed. In this study we have investigated the changes in performance and electrochemical properties of the MEA during extended operation and the effects of heat treatment of MEA on the long-term performance. The MEAs have been treated in an autoclave with saturated water vapor at 120$^{\circ}C$, vacuum oven at 140$^{\circ}C$ and boiling in organic solvents. The autoclaved MEA was found to be have the best long term performance. The on-off operation mode also increased the performance probably due to effective removal of products from the electrodes. Physical and electrochemical analyses using a scanning electron microscope, impedance analyser and half-cell technique have been done to characterize the MEAs.

Electronic state calculation of ceramics by $DV-X\;{\alpha}$ cluster method

  • Adachi, Hirohiko
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 1994.11a
    • /
    • pp.1-1
    • /
    • 1994
  • ;The electronic state calculations for various types of ceramic materials have beell performed by the use of $DV-X\;{\alpha}$ cluster method. The molecular orbital levels and wave functions for model clusters have been computed to study the electronic properties ami chemical bonding of the ceramics. For ${\beta}-sialon(Si_{6-z}Al_zO_zN_{8-z})$ which is a high temperature structural material based on ${\beta}-Si_3N_4$, we have made model cluster calculations to estimate the strength of chemical bonding between atoms by the Mulliken population analysis. It is found that the covalent bonding between Si and N atoms is very strong in pure ${\beta}-Si_3N_4$, but the covalency around solute atom is considerably weakened when Si atom is substituted by AI. This tendency is enhanced by an additional substitution of oxygen atom for N. The result calculated can well explain the experimental data of changes in mechanical properties such as the reductions of Young's modulus and Vickers hardness with increment of z-value in ${\beta}-sialon$. Various model clusters for transition metal oxides which show many interesting physical and chemical properties have also been calculated. High-valent perovskite-type iron oxides EMFe0_3E(M=Ca and Sr) possess very interesting magnetic and chemical properties. In these oxides, iron exists as $Fe^{4+}$ state, but the experimental measurement of Mossba~er effect suggests that disproportionation $2Fe^{4+}=Fe^{3+}+Fe^{5+}$ takes place for $CaFe0_3$ at low temperatures. The model cluster calculations for these compounds indicated the existence of considerably strong covalent bonding of Fe-O. The calculations of hyperfine interaction at iron neucleus show very good agreement with the experimental Mossbauer measurements. The result calculated also implies that the disproportionation reaction is strongly possible by assuming the quenching of breathing phonon mode at low temperatures.tures.

  • PDF

Development of Model for Video Media Music Therapy Program Using Body Expression -Based on Color, Harmony and Dynamics- (신체표현을 활용한 영상미디어 음악치료프로그램모형 개발 -색깔과 화음 및 다이나믹을 중심으로-)

  • Shin, Yeon-Sook;Cho, Sung-Hee
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.8
    • /
    • pp.429-437
    • /
    • 2012
  • The purpose of this research aims to find the changes resulted from the collaboration of colors, harmonies, and dynamics within a music. Through this research model, psychologically change of color and harmony, dynamics have explored to collect the resources for the research of the visual media music therapy program. In video media, music is utilized as non-verbal communication in many areas. The connection between melodies and colors, especially, is one of the most effective instrument to reduce the gap between realities and imagination, thus leading emotional inspiration. Gim's(Guided Imagery and Music) model of musical therapy strives to understand inner-side of human nature, and gives an insight into self-understanding. We would like to promote active, and physical model of musical therapy aside from passive existing mode, and apply it as the base resource for our ever-changing society, and teenage education.