• Title/Summary/Keyword: Physical Mode

Search Result 675, Processing Time 0.036 seconds

Measures for Improvement of RAM Target Value Setting Methods for Submarine Weapon Systems (잠수함 무기체계 RAM 목표 값 설정 방식의 개선방안)

  • Jung, Sun-uk;Shim, Hang-geun;Choi, Myoung-jin
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.4
    • /
    • pp.419-427
    • /
    • 2020
  • In the case of large combined weapon systems, such as submarines, the application, and verification of methods of setting the reliability, availability, and maintainability (RAM) target values for conventional weapon systems are limited. Submarines are complex weapon systems with the characteristics of the diversity of operation mode summary and mission profiles (OMS/MP) as well as equipment complexity because they are composed of multiple weapon systems, such as sonar systems and armed systems. Therefore, this study analyzed the development cases of existing weapon systems, i.e., the RAM target value-setting cases, and derived the problems and limitations of the cases to present measures to improve the setting and verification of the ram target values of submarines. In addition, submarines operate around the world and have different operating and maintenance conditions. Therefore, a submarine's ram target values should be set and verified centering on the mission essential equipment and mission critical equipment, instead of all components that constitute weapon systems. This study examined a method to verify the required performance RAM target-value setting, considering the characteristics of submarines as well as the physical performance requirements for the systems and equipment of submarines that must be considered when implementing national defense acquisition projects for submarines.

Studies on the Frost Heave Revelation and Deformation Behaviour due to Thawing of Weathered Granite Soils (화강암 풍화토의 동상 발현 및 융해에 따른 변형 거동에 관한 연구)

  • 류능환;최중대;류영선
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.37 no.3_4
    • /
    • pp.61-71
    • /
    • 1995
  • Natural ground is a composite consisted of the three phases of water, air and soil paircies. Among the three components, water as a material is weU understood but soil particles are not in foundation engineering. Especially, weathered granite soil generally shows a large volumetric expansion when they freeze. And, the stability and durability of the soil have shown decreased with repetitive freezing and thawing processes. These unique charcteristics may cause various construction and management problems if the soil is used as a construction material and foundation layers. This project was initiated to investigate the soil's physical and engineering characteristics resulting from freezing and freezing-thawing processes. Research results may be used as a basic data in solving various problems related to the soil's unique characteristics. The following conclusions were obtained: The degree of decomposition of weathered granite soil in Kangwon-do was very different between the West and East sides of the divide of the Dae-Kwan Ryung. Soil particles distributed wide from very coarse to fine particles. Consistency could be predicted with a function of P200 as LL=0.8 P200+20. Permeability ranged from 10-2 to 10-4cm/sec, moisture content from 15 to 20% and maximum dry density from 1.55 to 1.73 g /cmΥ$^3$ By compaction, soil particles easily crushed, D50 of soil particles decreased and specific surface significantly increased. Shear characteristics varied wide depending on the disturbance of soil. Strain characteristics influenced the soil's dynamic behviour. Elastic failure mode was observed if strain was less than 1O-4/s and plastic failure mode was observed if strain was more than 10-2/s. The elastic wave velocity in the soil rapidly increased if dry density became larger than 1.5 g /cm$^3$ and these values were Vp=250, Vg= 150, respectively. Frost heave ratio was the highest around 0 $^{\circ}C$ and the maximum frost heave pressure was observed when deformation ratio was less than 10% which was the stability state of soil freezing. The state had no relation with frost depth. Over freezing process was observed when drainage or suction freezing process was undergone. Drainage freezing process was observed if freezing velocity was high under confined pressure and suction frost process was occurred if the velocity was low under the same confined process.

  • PDF

Aerosol Observation with Raman LIDAR in Beijing, China

  • Xie, Chen-Bo;Zhou, Jun;Sugimoto, Nobuo;Wang, Zi-Fa
    • Journal of the Optical Society of Korea
    • /
    • v.14 no.3
    • /
    • pp.215-220
    • /
    • 2010
  • Aerosol observation with Raman LIDAR in NIES (National Institute for Environmental Studies, Japan) LIDAR network was conducted from 17 April to 12 June 2008 over Beijing, China. The aerosol optical properties derived from Raman LIDAR were compared with the retrieved data from sun photometer and sky radiometer observations in the Aerosol Robotic Network (AERONET). The comparison provided the complete knowledge of aerosol optical and physical properties in Beijing, especially in pollution and Asian dust events. The averaged aerosol optical depth (AOD) at 675 nm was 0.81 and the Angstrom exponent between 440 nm and 675 nm was 0.99 during experiment. The LIDAR derived AOD at 532 nm in the planetary boundary layer (PBL) was 0.48, which implied that half of the total AOD was contributed by the aerosol in PBL. The corresponding averaged LIDAR ratio and total depolarization ratio (TDR) were 48.5sr and 8.1%. The negative correlation between LIDAR ratio and TDR indicated the LIDAR ratio decreased with aerosol size because of the high TDR associated with nonspherical and large aerosols. The typical volume size distribution of the aerosol clearly demonstrated that the coarse mode radius located near 3 ${\mu}m$ in dust case, a bi-mode with fine particle centered at 0.2 ${\mu}m$ and coarse particle at 2 ${\mu}m$ was the characteristic size distribution in the pollution and clean cases. The different size distributions of aerosol resulted in its different optical properties. The retrieved LIDAR ratio and TDR were 41.1sr and 19.5% for a dust event, 53.8sr and 6.6% for a pollution event as well as 57.3sr and 7.2% for a clean event. In conjunction with the observed surface wind field near the LIDAR site, most of the pollution aerosols were produced locally or transported from the southeast of Beijing, whereas the dust aerosols associated with the clean air mass were transported by the northwesterly or southwesterly winds.

A New Design of the Interrogating Waves for Medical Ultrasonic Imaging Based on Wavelets and Subband Filter Banks: A Simulation Study (의료용 초음파 영상시스템을 위한 Wavelet 과 Subband Filter Bank 에 기반한 새로운 탐침 파형의 설계: A Simulation Study)

  • Yang Yoon Seok
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.6
    • /
    • pp.431-438
    • /
    • 2004
  • Medical ultrasonic imaging is a useful imaging facility known to be most safe and easy. It enables physicians to observe the inside structures of the bodies, blood flow, and motions of internal organs. Some physical properties of biologic tissues can also be estimated from backscattered sounds. However, the ultrasonic pulses interrogating the living organisms leave their footprints in the returning signals during imaging. Some significant details are buried in the footprints and their overlaps from adjacent particles. These distortions also decrease the quality of the images. Many research efforts have been made to enhance the image quality and to recover the acoustic information in various ways. In this study, a new interrogation method based on the wavelet and subband filter bank is proposed. It adopts the subband wavelet filters satisfying the perfect-reconstruction (PR) conditions as the interrogating pulses to restore the details useful in tissue characterization and to enhance the image quality. The proposed method was applied to two types of simulations of ultrasonic imaging. The results showed its ability to restore the detailsin the simulated interrogation of biologic tissues, and verified the improved image quality in the simulated imaging of general ultrasonic phantom compared with the conventional method.

A multiphase flow modeling of gravity currents in a rectangular channel (사각형 수로에서 중력류의 다상흐름 수치모의)

  • Kim, Byungjoo;Paik, Joongcheol
    • Journal of Korea Water Resources Association
    • /
    • v.52 no.10
    • /
    • pp.697-706
    • /
    • 2019
  • A multiphase flow modeling approach equipped with a hybrid turbulence modeling method is applied to compute the gravity currents in a rectangular channel. The present multiphase solver considers the dense fluid, the less-dense ambient fluid and the air above free surface as three phases with separate flow equations for each phase. The turbulent effect is simulated by the IDDES (improved delayed detach eddy simulation), a hybrid RANS/LES, approach which resolves the turbulent flow away from the wall in the LES mode and models the near wall flow in RANS mode on moderately fine computational meshes. The numerical results show that the present model can successfully reproduce the gravity currents in terms of the propagation speed of the current heads and the emergence of large-scale Kelvin-Helmholtz type interfacial billows and their three dimensional break down into smaller turbulent structures, even on the relatively coarse mesh for wall-modeled RANS computation with low-Reynolds number turbulence model. The present solutions reveal that the modeling approach can capture the large-scale three dimensional behaviors of gravity current head accompanied by the lobe-and-cleft instability at affordable computational resources, which is comparable to the LES results obtained on much fine meshes. It demonstrates that the multiphase modeling method using the hybrid turbulence model can be a promising engineering solver for predicting the physical behaviors of gravity currents in natural environmental configurations.

A Review and Analysis of the Thermal Exposure in Large Compartment Fire Experiments

  • Gupta, Vinny;Hidalgo, Juan P.;Lange, David;Cowlard, Adam;Abecassis-Empis, Cecilia;Torero, Jose L.
    • International Journal of High-Rise Buildings
    • /
    • v.10 no.4
    • /
    • pp.345-364
    • /
    • 2021
  • Developments in the understanding of fire behaviour for large open-plan spaces typical of tall buildings have been greatly outpaced by the rate at which these buildings are being constructed and their characteristics changed. Numerous high-profile fire-induced failures have highlighted the inadequacy of existing tools and standards for fire engineering when applied to highly-optimised modern tall buildings. With the continued increase in height and complexity of tall buildings, the risk to the occupants from fire-induced structural collapse increases, thus understanding the performance of complex structural systems under fire exposure is imperative. Therefore, an accurate representation of the design fire for open-plan compartments is required for the purposes of design. This will allow for knowledge-driven, quantifiable factors of safety to be used in the design of highly optimised modern tall buildings. In this paper, we review the state-of-the-art experimental research on large open-plan compartment fires from the past three decades. We have assimilated results collected from 37 large-scale compartment fire experiments of the open-plan type conducted from 1993 to 2019, covering a range of compartment and fuel characteristics. Spatial and temporal distributions of the heat fluxes imposed on compartment ceilings are estimated from the data. The complexity of the compartment fire dynamics is highlighted by the large differences in the data collected, which currently complicates the development of engineering tools based on physical models. Despite the large variability, this analysis shows that the orders of magnitude of the thermal exposure are defined by the ratio of flame spread and burnout front velocities (VS / VBO), which enables the grouping of open-plan compartment fires into three distinct modes of fire spread. Each mode is found to exhibit a characteristic order of magnitude and temporal distribution of thermal exposure. The results show that the magnitude of the thermal exposure for each mode are not consistent with existing performance-based design models, nevertheless, our analysis offers a new pathway for defining thermal exposure from realistic fire scenarios in large open-plan compartments.

A Study on the Field Application of the Measurement Technique for Static Displacement of Bridge Using Ambient Vibration (상시 진동을 이용한 교량 정적 처짐 산정 기술의 현장 적용성 연구)

  • Sang-Hyuk Oh;Dae-Joong Moon;Kwang-Myong Lee
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.4
    • /
    • pp.355-363
    • /
    • 2023
  • In safety assessment of a aged bridge, dynamic characteristics and displacement are directly related to the rigidity of the structural system, especially displacement is the most important factor as the physical quantity that the bridge user can directly detect. However, in order to measure the displacement of the bridge, it is difficult to install displacement sensors at the bottom of the bridge and conduct traffic blocking and loading tests, resulting in increased costs or impossible measurements depending on the bridge's environment. In this study, a method of measuring the displacement of a bridge using only accelerometers without installing displacement sensors and ambient vibration without a loading test was proposed. For the analysis of bridge dynamic characteristics and displacement using ambient vibration, the mode shape and natural frequency of the bridge were extracted using a TDD technique known to enable quick analysis with simple calculations, and the unit load displacement of the bridge was analyzed through flexibility analysis to calculate static displacement. To verify this proposed technology, an on-site test was conducted on C Bridge, and the results were compared with the measured values of the loading test and the structural analysis data. As a result, it was confirmed that the mode shape and natural frequency were 0.42 to 1.13 % error ratio, and the maximum displacement at the main span was 3.58 % error ratio. Therefore, the proposed technology can be used as a basis data for indirectly determine the safety of the bridge by comparing the amount of displacement compared to the design and analysis values by estimating the displacement of the bridge that could not be measured due to the difficulty of installing displacement sensors.

The quality investigation of 6H-SiC crystals grown by conventional PVT method with various SiC powders

  • Yeo, Im-Gyu;Lee, Won-Jae;Shin, Byoung-Chul
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.113-114
    • /
    • 2009
  • Silicon carbide is one of the most attractive and promising wide band-gap semiconductor material with excellent physical properties and huge potential for electronic applications. Up to now, the most successful method for growth of large SiC crystals with high quality is the physical vapor transport (PVT) method [1, 2]. Since further reduction of defect densities in larger crystal are needed for the true implementation of SiC devices, many researchers are focusing to improve the quality of SiC single crystal through the process modifications for SiC bulk growth or new material implementations [3, 4]. It is well known that for getting high quality SiC crystal, source materials with high purity must be used in PVT method. Among various source materials in PVT method, a SiC powder is considered to take an important role because it would influence on crystal quality of SiC crystal as well as optimum temperature of single crystal growth, the growth rate and doping characteristics. In reality, the effect of powder on SiC crystal could definitely exhibit the complicated correlation. Therefore, the present research was focused to investigate the quality difference of SiC crystal grown by conventional PVT method with using various SiC powders. As shown in Fig. 1, we used three SiC powders with different particles size. The 6H-SiC crystals were grown by conventional PVT process and the SiC seeds and the high purity SiC source materials are placed on opposite side in a sealed graphite crucible which is surrounded by graphite insulation[5, 6]. The bulk SiC crystal was grown at $2300^{\circ}C$ of the growth temperature and 50mbar of an argon pressure. The axial thermal gradient across the SiC crystal during the growth is estimated in the range of $15\sim20^{\circ}C/cm$. The chemical etch in molten KOH maintained at $450^{\circ}C$ for 10 min was used for defect observation with a polarizing microscope in Nomarski mode. Electrical properties of bulk SiC materials were measured by Hall effect using van der Pauw geometry and a UV/VIS spectrophotometer. Fig. 2 shows optical photographs of SiC crystal ingot grown by PVT method and Table 1 shows electrical properties of SiC crystals. The electrical properties as well as crystal quality of SiC crystals were systematically investigated.

  • PDF

A Scanning Electron Microscopic Study on the Effect of Nd:YAG Laser Irradiation on the Sclerotic Dentin (Nd:YAG레이저조사가 경화상아질에 미치는 영향에 관한 주사전자현미경적 연구)

  • Kim, Moon-Hyeon;Shin, Keum-Back
    • Journal of Oral Medicine and Pain
    • /
    • v.24 no.4
    • /
    • pp.397-410
    • /
    • 1999
  • In order to obtain the basic data concerning the optimal parameters in using Nd:YAG laser as a therapeutic modality to dentinal hypersensitivity, the author prepared 3 sections of sound dentin and 10 sections of sclerotic dentin with thickness of $0.5mm{\pm}0.1mm$ from human extracted teeth of anteriors and premolars, and applied the laser energy from a fiberoptic delivered, free running, pulsed Nd:YAG laser (wavelength 1064nm, pulse duration $120{\mu}sec$, fiber diameter $320{\mu}m$) to surfaces of sound and sclerotic dentin sections for 1 second with contact/unidirectional moving mode of the fiber under speed of 3mm~4mm/sec and parameters of 0.5W/10Hz, 1.0W/10Hz, 1.5W/10Hz, 2.0W/10Hz: $62J/cm^2$, $124J/cm^2$, $187J/cm^2$, $249J/cm^2$. The author comparatively evaluated the characteristics of ultrastructural changes on surfaces of sound and sclerotic dentin sections irradiated by the pulsed Nd:YAG laser using the scanning electron microscopy. A fairly ill-defined bordered surface of partially closed and melted dentinal tubules can be seen on the scanning electron microscopic feature of the sound dentin surface irradiated by the pulsed Nd:YAG laser with energy density of $62J/cm^2$. The physical modification of sound dentin surface extensively occurred depended on the increase of energy density from $62J/cm^2$ to $124J/cm^2$, $187J/cm^2$, $249J/cm^2$. While, a fairly well-defined bordered surface of partially closed and melted dentinal tubules with thickened peritubular dentin can be seen on the scanning electron microscopic feature of the sclerotic dentin surface irradiated by the pulsed Nd:YAG laser with energy density of $62J/cm^2$. The physical modification of sclerotic dentin surface of a fairly rough, shallow depression with many cracks, thickened peritubular dentin and structureless dentinal tubules extensively occurred depended on the increase of energy density from $62J/cm^2$ to $124J/cm^2$, $187J/cm^2$, $249J/cm^2$ compared to those of sound dentin surface irradiated by the pulsed Nd:YAG laser under the same parameters. Therefore, it is recommended that the pulsed Nd:YAG laser as a therapeutic modality to dentinal hypersensitivity should be applied with the less energy density than $62J/cm^2$ on the sound dentin surface, and its energy density on the partially sclerotic dentin surface should be lower than that on the sound dentin surface to preserve tooth from unnecessary excessive structural destruction.

  • PDF

A Study on a Multiresolution Filtering Algorithm based on a Physical Model of SPECT Lesion Detectability (SPECT 이상조직 검출능 모델에 근거한 다해상도 필터링 기법 연구)

  • Kim, Jeong-Hui;Kim, Gwang-Ik
    • Journal of Biomedical Engineering Research
    • /
    • v.19 no.6
    • /
    • pp.551-562
    • /
    • 1998
  • Amultiresolution filtering algorithm based on the physical SPECT lesion detachability provides and optimal solution for SPECT reconstruction problem. Related to the previous study, we estimated the SPECT lesion detection capability by m minimum detectable lesion sizes (MDLSs), and generated m reconstruction filters which are designed to maximize the smoothing effect at a fixed MDLS-dependent resolution level $\frac{MDLS}{4\sqrt{2In2}}$. The proposed multiresolution filtering algorithm used a coarse-to-fine approach for the m-level resolution filter images obtained from these m filters for a given projection image. First, the local homogeneity is determined for every pixel of the filter images, by comparing the local variance value computed in a window centered at the pixel and the mode determined from the distribution of the local variances. Based on the local homogeneity, the pixels declared as homogeneous are chosen from the filter image of the lowest resolution, and for the other pixels the same process is repeated for the higher resolution filter images. For the non-homogeneous pixels after this pixels after this repetition process ends, the pixel values of the highest resolution filter image are substituted. From the results of the simulated experiments, the proposed multiresolution filtering algorithm showed a strong smoothing effect in the homogeneous regions and a significant resolution improvement near the edge regions of the projection images, and so produced good adaptability effects in the reconstructed images.

  • PDF