• Title/Summary/Keyword: Physical Measurement Units

Search Result 33, Processing Time 0.025 seconds

Component Specification of Physical Measurement Units in Web3D (웹3D에서의 물리적 측정 단위 컴포넌트 명세)

  • Kim, Su-Hyun;Lee, Myeong-Won
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.15 no.6
    • /
    • pp.454-458
    • /
    • 2009
  • The technology of virtual environments has been developed with better-quality appearance on a computer display in mind, but without consideration for objects' precise measurements in physical units. With the increased application of computer graphics in a variety of areas, there is a need for precise measurement functionality in addition to visualization. This paper describes the definition of physical properties using measurement units for X3D based virtual objects, to provide their precise physical information in virtual environments. To this end, we have included the physical property node in the X3D specification. The physical measurement units, such as length, mass, time, temperature, etc., are based on SI units (International System of Units).

Relative Humidity Transducer Proficiency Test for KOLAS Humidity Calibration Laboratories (KOLAS 교정기관 간 측정 동등성 확립을 위한 상대습도 변환기 숙련도 시험)

  • Sang-Wook Lee;Young-Suk Lee;Byung-Il Choi
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.6
    • /
    • pp.447-454
    • /
    • 2023
  • The Korea Laboratory Accreditation Scheme (KOLAS) operates accreditation programs for ensuring measurement traceability with the International System (SI) of Units - the highest calibration standard that measurements can be tested against. As of September 2023, there are 70 KOLAS-accredited laboratories in the Republic of Korea that specialize in humidity calibration. Among them, 32 KOLAS laboratories, along with one laboratory not affiliated with KOLAS, participated in the proficiency test (PM 2023-11) for relative humidity transducers in 2023. This proficiency test was conducted within a relative humidity range of 20-90% at a temperature of approximately 20 ℃, taking into consideration the calibration and measurement capability (CMC) of the participating laboratories. The primary objective of the proficiency test was to establish the measurement equivalence between each participating laboratory and the reference laboratory, by calculating the number of equivalence (En). When |En| was less than 1, the measurements from the participating and reference laboratory were equivalent. Out of the 33 participating laboratories, 32 successfully met this criterion and passed the proficiency test.

Effect of a New Developed Physical Restraint to Reduce Skin Injury in Intensive Care Units (중환자실에서 피부손상을 감소시키기 위한 억제대 개발 및 적용효과)

  • Mun, Jung-Sook;Lee, Gyeong-Nam;Lee, Dong-Suk
    • Journal of Korean Academy of Fundamentals of Nursing
    • /
    • v.18 no.1
    • /
    • pp.28-36
    • /
    • 2011
  • Purpose: The purpose of this study were to develop a new restraint for the intensive care units (ICU) and to investigate the application effect in comparison with a control group using existing restraints. Method: A non-equivalent control group non-synchronized quasi-experimental research design was used. The participants were 40 (control 20, experimental 20) patients who were recruited by convenience sampling the ICU of a university hospital. To avoid contamination of the experiment, data for the control group were collected prior to the experimental group. Measurement variables were edema and skin damage (redness and abrasion) at the application site, and nurses' perceived convenience in applying restraints. Results: Three days after applying the restraint, amount of edema at the application site was small and incidence of skin damage decreased in the experimental group in comparison with the control group. Also, score for application convenience measured by the nurses was higher in for the newly developed restraint than for existing restraints. Conclusion: Results indicate that the newly developed restraint has lower effects such as edema and skin damage and is more convenient compared with existing restraints, and is therefore recommended for patients in the ICU.

Three-dimensional kinematic motion analysis of door handling task in people with mild and moderate stroke

  • Lee, Jung Ah;Kim, Eun Joo;Hwang, Pil Woo;Park, Han Ram;Bae, Jae Hyuk;Kim, Jae Nam
    • Physical Therapy Rehabilitation Science
    • /
    • v.5 no.3
    • /
    • pp.143-148
    • /
    • 2016
  • Objective: This study aimed to quantify one of the useful upper extremity movements to evaluate motor control abilities between the groups of people with mild and moderate arm impairments performing a door handling task. Design: Cross-sectional study. Methods: Twenty-one healthy participants and twenty-one persons with chronic stroke (9 mild stroke and 12 moderate stroke) were recruited for this study. Stroke participants were divided into 2 groups based on Fugle-Meyer Assessment scores of 58-65 (mild arm) and 38-57 (moderate arm). All they performed door handling task including the pronation and supination phases 3 times. We measured some movement factors which were reaction time, movement time, hand of peak velocity, hand of movement units to perform door handling task using the three-dimensional motion analysis. Results: The majority of kinematic variables showed significant differences among study groups (p<0.05). The reaction time, total and phase of movement time, hand of peak velocity, the number of movement units discriminated between healthy participants and persons with moderate upper limb stroke (p<0.05). In addition, reaction time, total and phase of movement time, the number of movement units discriminated between those with moderate and mild upper limbs of stroke patients (p<0.05). Conclusions: Three-dimensional kinematic motion analysis in this study was a useful tool for assessing the upper extremity function in different subgroups of people with stroke during the door handling task. These kinematic variables may help clinicians understand the arm movements in door handling task and consist of discriminative therapeutic interventions for stroke patients on upper extremity rehabilitation.

Design of the Blood Pressure Measurement System Using the Inflatable Oscillometric Method (가압식 오실로메트릭 방법을 사용한 혈압측정 시스템의 설계)

  • 노동곤;이윤선;지정호;박성빈;이계형;김해관
    • Journal of Biomedical Engineering Research
    • /
    • v.24 no.4
    • /
    • pp.281-286
    • /
    • 2003
  • Blood Pressure is one of the most fundamental Parameters which reflects physical conditions medically and the blood pressure measurement system using oscillometric method is a Non-Invasive Blood Pressure measurement device by measuring arterial Pressure through a cuff. In this paper. we designed a inflatable wrist blood pressure system which measures blood Pressure during the stepping inflation in the wrist cuff. The hardware system consists of a main power unit, a bladder in cuff unit, signal detection units, signal Processing units. a wireless data transmission unit, and a data display unit. We evaluated the reliability of this system by comparing and analyzing systolic. diastolic blood Pressure, and heart rate with other commercial blood Pressure measurement devices. Characteristic ratio values used to determine systolic and diastolic blood Pressure using MAA(Maximum Amplitude Algorithm) were 0.436 and 0.671 respectively.

Fast Neutron Beam Dosimetry (속중성자선의 선량분포에 관한 연구)

  • Lee Hyo Nam;Ji Young Hoon;Ji Kwang Soo;Lee Dong Han
    • The Journal of Korean Society for Radiation Therapy
    • /
    • v.9 no.1
    • /
    • pp.71-81
    • /
    • 1997
  • I. Objective and Importance of the Project We have been using MC-50 cyclotron and NT-50 neutron therapy machine for treating cancer patients since 1986 at Korea Cancer Center Hospital. It is mandatory to measure accurately the dose distribution and the total absorbed dose of fast neutron for putting it to the clinical use. At present the methods of measurement of fast neutron are proposed largely by American Associations of Physicists in Medicine (Task Group 18), European Clinical Neutron Dosimetry Group, and International Commission on Radiation Units and Measurements. The complexity of measurement, however, induce the methodological differences between them. In our study, therefore, we tried to establish a unique technique of measurement by means of measuring the emitted doses and the dose distribution of fast neutron beam from neutron therapy machine, and to invent a standard method of measurement adequate to our situation. II. Scope and Contents of the Project For establishing a unique technique of measurement and inventing a standard method of measurement of fast neutron beam, 1. to grasp the physical characteristics of neutron therapy machine 2. to study the principles for measrement of fast neutron beam 3. to get the dose distribution (dose rate, percent-depth dose, flatness etc) throught the actual measurement 4. to compare our data with those being cited world-widely.

  • PDF

Detection and Quantification of Screw-Home Movement Using Nine-Axis Inertial Sensors

  • Jeon, Jeong Woo;Lee, Dong Yeop;Yu, Jae Ho;Kim, Jin Seop;Hong, Jiheon
    • The Journal of Korean Physical Therapy
    • /
    • v.31 no.6
    • /
    • pp.333-338
    • /
    • 2019
  • Purpose: Although previous studies on the screw-home movement (SHM) for autopsy specimen and walking of living persons conducted, the possibility of acquiring SHM based on inertial measurement units received little attention. This study aimed to investigate the possibility of measuring SHM for the non-weighted bearing using a micro-electro-mechanical system-based wearable motion capture system (MEMSS). Methods: MEMSS and camera-based motion analysis systems were used to obtain kinematic data of the knee joint. The knee joint moved from the flexion position to a fully extended position and then back to the start point. The coefficient of multiple correlation and the difference in the range of motion were used to assess the waveform similarity in the movement measured by two measurement systems. Results: The waveform similarity in the sagittal plane was excellent and the in the transverse plane was good. Significant differences were found in the sagittal plane between the two systems (p<0.05). However, there was no significant difference in the transverse plane between the two systems (p>0.05). Conclusion: The SHM during the passive motion without muscle contraction in the non-weighted bearing appeared in the entire range. We thought that the MEMSS could be easily applied to the acquisition of biomechanical data on the knee related to physical therapy.

Validity and Reliability on Psychometric Arthritis Impact Measurement Scale-Short Form (AIMS-SF) in Knee Osteoarthritis Patients (골관절염영향측정척도(AIMS-SF)의 타당도 및 신뢰도 - 일부 슬관절 골관절염 환자를 대상으로 -)

  • Yi, Seung-Ju;Nam, Tae-Ho
    • The Journal of Korean Physical Therapy
    • /
    • v.19 no.5
    • /
    • pp.29-41
    • /
    • 2007
  • Purpose: The aim of this study was to examine the validity and reliability on Psychometric Arthritis Impact Measurement Scale-Short Form (AIMS-SF) in patients with knee osteoarthritis(OA). Methods: The sample consisted of 62 patients who had received physical therapy at the physical therapy units of the Andong Medical Center, Sungso Hospital, Ahn Orthopedic Surgery Clinic, and St. Luke Clinic in Andong city in June 2006. Questionnaire on the AIMS-SF was recruited by 5 physical therapists. The internal structure and reliability of the scales were evaluated by means of item-internal consistency(Cronbach's alpha coefficient: ${\alpha}$), item-discriminant validity, Pearson's relation coefficient. To explore construct validity we conducted a principal component factor analysis with varimax rotation analysis. The criterion for factor extraction was an eigenvalue >1.0. Results: 62 OA patients's an average $age{\pm}standard$ deviation was $53.8{\pm}14.4$ years (range: $40{\sim}81$ yr). The internal consistency reliability of 11 items, as estimated by Cronbach's ${\alpha}$ coefficient, was high ranging $0.60{\sim}0.78$ (except for 0.40 for mobility level and -0.48 for mood). The internal consistency reliability of item-each scale was also high $0.82{\sim}0.93$ (except for 0.48 for mood). Of 11 items, the item-discriminant validity on 6 items was high (${\alpha}$ coefficient range: $0.11{\sim}0.25$), however, others (0.57 for tension level, 0.48 for arthritis pain, 0.41 for walking and bending, and 0.40 for work) were a little low. The construct validity by factor analysis was a little low. Conclusion: In conclusion, the results reported here confirm the validity and reliability of the AIMS-SF in patients with OA of the knee. The Collection of information on health status using this instrument was acceptable to patients. A further prospective multi-center study will be necessary to prove the construct validity.

  • PDF

The Indoor Thermal and Air Environment of General Apartment Houses during Winter in Cheongju City (청주시 아파트 일반가정의 겨울철 실내열·공기환경 현장측정조사)

  • Cho, Jun Haeng;Choi, Yoon Jung
    • KIEAE Journal
    • /
    • v.13 no.3
    • /
    • pp.111-120
    • /
    • 2013
  • The purposes of this study were to investigate the actual state of the indoor thermal and air environment in general apartment houses during winter in Cheongju City, to analyze the related factors with the indoor thermal and air environment, and to make suggestions for the improvement. A series of visiting field investigation was conducted in twenty units between 28th December, 2010, and 11th March, 2011. The field investigations included the measurement of physical indoor environmental conditions, the observation of architectural characteristics and resident's behavior, and the on-site questionnaire survey of residents. The measured values of each units were compared to evaluation standard and were categorized to group by the difference between units. Factors related to the difference of the measured values between the groups were analyzed. The findings are summarized as followed. The indoor temperature of apartment houses during winter in Cheongju City was generally suitable. The relative humidity was slightly dry, while the $CO_2$ concentration was found to be excessively high. The factors related indoor environment were analysed as heating operation, ventilation, gas range use, and hanging out the wash to dry in indoors.