• Title/Summary/Keyword: Physical Endurance

Search Result 500, Processing Time 0.034 seconds

The grading of cognitive state comparisons with different distances across three conditions in stroke survivors

  • Kim, Yumi;Park, Yuhyung
    • Physical Therapy Rehabilitation Science
    • /
    • v.3 no.2
    • /
    • pp.134-141
    • /
    • 2014
  • Objective: The purpose of this study was to compare with different distance across three conditions in stroke survivors with the grading of cognitive state. Design: Cross-sectional study. Methods: Twelve stroke patients who agreed to active participation were included. Participants were allotted to normal cognitive (CN) group (n=7) and cognitive impairment (CI) group (n=5) and then walked on a self-paced walkway at three conditions on the Time Up and Go (TUG) test and the 6 minute walk test (6MWT): 1) walking with your comfortable speed, 2) walking while carrying a tray with glasses, 3) walking with a verbal cognitive task. The TUG test was repeated three successful times on each condition. For the 6MWT, participants were tested one time. Results: The CI group walked slower than the CN group at the three conditions on the TUG test. However, there was no significant difference between two groups to each condition. A significant effect of dual tasking was found only in error of verbal cognitive task condition for the TUG test (p<0.05). On the 6MWT, the participants in the CI group walked short distance rather than the CN group (p<0.05). There were significant differences between two groups not only at all conditions but also at error of verbal cognitive task condition as well (p<0.05). Conclusions: To consider the results of different distances such as the TUG test and the 6MWT, we think that exercises in long distance would be more effective to patients with CI. Those would be improved patient's endurance in cognitive problem.

Analysis of Body Composition and Functional Physical Performance in Urban-Dwelling Elderly Women with or without Obesity (도시 거주 여성 노인의 비만 유무에 따른 신체구성, 상⋅하지 근력 및 신체활동 능력 분석)

  • Choi, Seung-Jun
    • PNF and Movement
    • /
    • v.19 no.3
    • /
    • pp.331-340
    • /
    • 2021
  • Purpose: The purpose of this study was to investigate the differences in body composition, upper and lower limb muscle strength, and functional physical ability in urban-dwelling elderly women with or without obesity. Methods: All study participants were assigned to the normal weight group (n=8, BMI<25) and the obesity group (n=7, BMI>25) based on their obesity rate. Anthropometric measurement was conducted and body composition was measured. For the upper and lower limb strength, grip strength and maximal isometric knee extension and flexion were evaluated by a dynamometer. The senior fitness test was performed to measure functional ability. Data analysis was conducted by the independent t-test and the alpha level was set at 0.05. Results: The waist, hips, and thighs of obese elderly women were thicker than those of normal-weight elderly women. This physical difference resulted from body fat mass, not muscle mass. Despite a similar level of limb muscle mass between the two groups, the upper limb grip strength was higher (24.00% for left, 19.95% for right) in the normal-weight women than the obese women (p<0.05), but otherwise there was no difference in maximal knee flexion or extension isometric strength. Functional physical ability showed no difference in a 30-second chair sit and stand test and a six-minute walk test, but a 30-second arm-curl (11.00% for left, 14.81% for right), back stretch (8.54cm for left, 8.99cm for right), chair sit and reach (9.22cm for left, 6.24cm for right), and 2.44 meter round trip walk (0.62 sec, 9.39%) were faster in performance for normal-weight elderly women than obese elderly women (p<0.05). Conclusion: Taken together, despite similar levels of upper and lower extremity muscle mass, normal-weight elderly women showed higher performance in upper limb strength, flexibility, and agility than obese elderly women, but there was no difference in lower extremity functional muscle strength and cardiopulmonary endurance.

Impact of nanocomposite material to counter injury in physical sport in the tennis racket

  • Hao Jin;Bo Zhang;Xiaojing Duan
    • Advances in nano research
    • /
    • v.14 no.5
    • /
    • pp.435-442
    • /
    • 2023
  • Sports activities, including playing tennis, are popular with many people. As this industry has become more professionalized, investors and those involved in sports are sure to pay attention to any tool that improves athletes' performance Tennis requires perfect coordination between hands, eyes, and the whole body. Consequently, to perform long-term sports, athletes must have enough muscle strength, flexibility, and endurance. Tennis rackets with new frames were manufactured because tennis players' performance depends on their rackets. These rackets are distinguished by their lighter weight. Composite rackets are available in many types, most of which are made from the latest composite materials. During physical exercise with a tennis racket, nanocomposite materials have a significant effect on reducing injuries. Materials as strong as graphite and thermoplastic can be used to produce these composites that include both fiber and filament. Polyamide is a thermoplastic typically used in composites as a matrix. In today's manufacturing process, materials are made more flexible, structurally more vital, and lighter. This paper discusses the production, testing, and structural analysis of a new polyamide/Multi-walled carbon nanotube nanocomposite. This polyamide can be a suitable substitute for other composite materials in the tennis racket frame. By compression polymerization, polyamide was synthesized. The functionalization of Multi-walled carbon nanotube (MWCNT) was achieved using sulfuric acid and nitric acid, followed by ultrasonic preparation of nanocomposite materials with weight percentages of 5, 10, and 15. Fourier transform infrared (FTIR) and Nuclear magnetic resonance (NMR) confirmed a synthesized nanocomposite structure. Nanocomposites were tested for thermal resistance using the simultaneous thermal analysis (DTA-TG) method. scanning electron microscopy (SEM) analysis was used to determine pores' size, structure, and surface area. An X-ray diffraction analysis (XRD) analysis was used to determine their amorphous nature.

Structural Analysis of Gas Generator Regenerative Cooling Chamber (재생냉각형 가스발생기 챔버 구조해석)

  • Ryu, Chul-Sung;Kim, Hong-Jip;Choi, Hwan-Seok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.10
    • /
    • pp.1046-1052
    • /
    • 2007
  • Elastic-plastic structural analysis for regenerative cooling chamber of gas generator was performed. Uniaxial tension test was conducted for STS316L at room and high temperature conditions to get the material data necessary for the structural analysis of the chamber which was operated under thermal load and high internal pressure. Physical properties including thermal conductivity, specific heat and thermal expansion were also measured. The structural analysis for four different types of regenerative cooling chamber of gas generator revealed that increased cooling performance decreased the thermal load and strain of the cooling channel structure. The results propose that in order for the regenerative cooling gas generator chamber to have high structural stability with endurance to high mechanical and thermal loads, it is important for the chamber to be designed to have high cooling performance.

New Korean Traditional Papermaking from Paper Mulberry(III)-Properties of the Hanjis Mixed with Bast Part and Whole Stalk Pulps- (닥나무를 이용한 새로운 한지의 제조(제3보)-인피부 및 전간부 펄프 혼합초지 한지의 특성-)

  • 최태호;조남석
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.30 no.2
    • /
    • pp.85-95
    • /
    • 1998
  • Traditionally, Hanji had been made only with the bast fiber of paper mulberry (Broussonetia kazinoki). Nowadays, Hanji has been made mainly in the mixed forms of paper mulberry bast fiber and waste paper, and consequently it has raised many problems using them. This study was carried out to investigate the characteristics of Hanji mixed with paper mulberry bast part and whole stalk pulps. Hanjis made from the solfomethylated pulp were shown higher brightness and sheet strengths than those from alkali and alkali-hydrogen peroxide pulps. The brightness of solfomethylated pulp was found to be high enough not to need additional bleaching. The sheet formations were improved as the increase of whole stalk pulp contents, while the sheet strengths were decreased. In the physical properties of the Hanji mixed with bast part and whole stalk pulps, the handsheet strengths were decreased as the increase of the whole stalk pulp contents. The tensile strength and folding endurance of the Hanji containing 40∼60% of whole stalk pulps were higher as compared to the others.

  • PDF

Structural Analysis of Gas Generator Regenerative Cooling Chamber (가스발생기 재생냉각 챔버 구조해석)

  • Ryu, Chul-Sung;Choi, Hwan-Seok
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.802-807
    • /
    • 2007
  • Elastic-plastic structural analysis for regenerative cooling chamber of gas generator was performed. Uniaxial tension test was also conducted for STS316L at room and high temperature conditions to get the material data necessary for the structural analysis of the chamber which is operated under thermal load and high internal pressure. Physical properties including thermal conductivity, specific heat and thermal expansion data were also measured. The structural analysis for four different types of regenerative cooling chamber of gas generator revealed that increased cooling performance decreases the thermal load and strain of the cooling channel. The results propose that in order for the regenerative cooling gas generator chamber to have high structural stability with endurance to high mechanical and thermal loads, it is important for the chamber to be designed to have high cooling performance.

  • PDF

Effects of Montmorillonite Clay on Properties of paper Coating Additives

  • Seo Yoon-Seok;Nah Chang-Woon
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.38 no.1 s.113
    • /
    • pp.34-44
    • /
    • 2006
  • A new composition of paper coating adhesives was prepared by using a nano-filler of an organically-modified montmorillonite (O-MMT). The new O-MMT coating adhesives were applied to the paper, and the properties of coated papers including surface morphology, optical and physical properties, and printing properties were investigated. The use of O-MMT improved the mechanical properties, such as folding endurance, tearing strength, and tensile strength, while the surface smoothness decreased. It decreased especially when the dosage was high enough, approximately above 6 parts. The printing properties such as wet- and dry-pick were enhanced with addition of O-MMT.

A Study on the Performance Evaluation Method of Waterproofing-Seal as Leakage Cracks Repairing Material using on the Underground Structure (지붕용 톱코팅재의 내구성 향상에 관한 성능 및 평가방법에 관한 기초적 연구)

  • Park, Jin-Sang;Kang, Hyo-Jin;Oh, Sang-Keun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.517-520
    • /
    • 2006
  • The waterproofing of Building on the roof has been exposed more underground or the other part of waterproofing than environmental factor(solar heat, UV, salt, acid rain, wind, temperature, snow, rain, etc.) or physical factor. So it must be have a waterproofing performance and it has a special technique for the maintaining of concrete durability. Therefore, exposed waterproof layer has to protected from UV, solar heat, rain and the outside environment also, to endurance durability methods spread face plate topcoat material on the waterproof layer. But, actuality faceplate waterproof layer of topcoat materials are unbearable to UV, solar heat and moisture etc. and it doesn't have adhesion with waterproof layer in the middle. So it happens to crack, separating and heaving etc. Therefore, in the study, we will suggest that using of the exposed roof waterproof layer topcoat materials test method manage rooftop waterproof layer for the durability and the stability.

  • PDF

효소처리에 의한 제지적성 개선

  • 김형진;조병묵
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2000.04a
    • /
    • pp.39-46
    • /
    • 2000
  • In pulp and papermaking process, enzymatic treatment of pulp fibres has been a topic of increasing interest in last decade. Lots of patents, papers and research reports were published on the application of enzymes in the fields of enzymatic bleaching, deinking, slime control, pitch control, waste water treatment and fibre modification. Cellulase and hemicellulase are the principal enzymes used for the modification of fibre property. This study was carried out for determinating the behaviors of enzyme to pulp fibres. A commercial enzyme, Denimax BT which is consisted with cellulase and hemicellulase, was treated to the kraft pulp produced from domestic hardwood mixtures. Results were mainly concentrated on the behaviors of freeness, drainability and fines content of fibres, and physical properties of paper with enzyme treatment. The freeness levels and dewatering ability were developed, and the fines contents were decreased. The creation of fines were controlled by the method of pre-enzyme treatment prior to fibre beating. The mechanical strength of paper, like tensile, burst, tear strength and folding endurance, were remarkably improved by the pre-enzyme treatment.

  • PDF

Effect of Cellulase Pretreatment on Beatability of Pulp and Physical Properties of Paper (셀룰라아제의 전처리가 펄프의 고해도 및 종이의 물리적 성질에 미치는 영향)

  • Song, Gu-Hyeon;Go, Won-Geon;Park, Jin-Won;;Im, Yeong-Gi
    • KSBB Journal
    • /
    • v.14 no.4
    • /
    • pp.470-475
    • /
    • 1999
  • Several enzyme were applied to Laubholz Bleached Kraft Pulp(LBKP) to evaluate the influence on beatability which was measured in Schopper Riegler value, and the results were compared with untreated pulp. Among the types of enzyme, cellulase was found to be the most effective. Addition of cellulase increased the beatability by 28% at optimum condition. Strength properties such as tensile strength and folding endurance also increased with enzymatic treatment by 12% and 46%, respectively. However, excessive dosage of cellulase had an adverse effect on strength properties in spite of the high beatability. Fibrillization by cellulase and destruction of fiber by excessive reaction was observed by Scanning Electron Microscopy(SEM).

  • PDF