• 제목/요약/키워드: Physical Element

검색결과 1,131건 처리시간 0.033초

Repair of tendon injury in Taekwondo by nanobiotics

  • Dilong An;Shun Jiang;Tongtong Cai;Wei Tian
    • Advances in nano research
    • /
    • 제14권6호
    • /
    • pp.591-602
    • /
    • 2023
  • In the present study, capability of nanobiotics in repairing tendon injuries commonly occur in Taekwondo sport is investigated and some approaches are proposed. In this regard, a brief review on the types and application of nanobiotics is presented. Their capabilities and limitation are discussed. Next, different type of tendon injuries in Taekwondo athletes are discussed along with their treatment approaches. Based on the presented data, a nano-scale feasible robot model carrying nanobiotics is proposed for repairing tendons. Finite element simulations is also conducted to show the effectiveness of the repairing process using nanorobots equipped with nanobiotics. This repairing procedure is a combination of mechanical and chemical treatments. The results indicated that using nanobiotics on nanorobots arms in the repair of tendon injuries has many benefits. First, drug delivery is directly injected to the target section. Second, Due to the nanorobots small sizes more acute treatment is possible. Finally, since the control of the nanorobots are assisted with computers, the possibility of human error reduces significantly. The proposed method of the present study could be utilized by other scientists and technological industry in developing final nanorobots with nanobiotics carrying capacity.

유한요소법을 이용한 탄소강의 경화능 해석(I) (Analysis of Hardenability for Carbon Steel using Finite Element Method (I))

  • 김옥삼;구본권
    • 열처리공학회지
    • /
    • 제11권2호
    • /
    • pp.131-139
    • /
    • 1998
  • The object of this research is to estimate the hardenability of quenched carbon steels AISI 1050. The equation of transient heat conduction was analyzed to derive cooling curve by finite element method. The effects of temperature on physical properties, metallic structures and the latent heat by phase transformation were considered. A good agreement was found between analytical and experimental results to show that the proposed numerical procedure was reliable. This procedure could be used as the detabase for optimal condition of heat treatment cycle.

  • PDF

Mode localization and frequency loci veering in a disordered coupled beam system

  • Lu, Z.R.;Liu, J.K.;Huang, M.
    • Structural Engineering and Mechanics
    • /
    • 제24권4호
    • /
    • pp.493-508
    • /
    • 2006
  • Vibration mode localization and frequency loci veering in disordered coupled beam system are studied in this paper using finite element analysis. Two beams coupled with transverse and rotational springs are examined. Small disorders in the physical parameters such as Young's modulus, mass density or span length of the substructure are introduced in the investigation of the mode localization and frequency loci veering phenomena. The effect of disorder in the elastic support on the mode localization phenomenon is also discussed. It is found that an asymmetric disorder in the weakly coupled system will lead to the occurrence of mode localization and frequency loci phenomena.

단조해머의 타격효율 결정 (Determination of Blow Efficiency of the Forging Hammer)

  • 이성호;조남춘;이종수
    • 대한기계학회논문집
    • /
    • 제19권6호
    • /
    • pp.1539-1544
    • /
    • 1995
  • Copper blow test to measure the forging capability of 35 ton counterblow hammer and upset of plasticine on the model hammer to investigate the change of the blow efficiency during the forging process have been performed together with finite element analyses of these experiments. The blow efficiency of the hammer has been found to be dependent on the friction and on the contact area between the die and the workpiece. The effects of the volume and the aspect ratio of the billet have not been found. Inferring from the experimental results and Schey's empirical formula on the forging load, we expect that the efficiency also varies with the flow stress of the workpiece material and with the shape complexity of the forging product.

유한요소법에 의한 하구의 수질모델 BAYQUAL (BAYQUAL Model for the Water Quality Simulation of a Bay Using Finite Element Method)

  • 류병로;한양수
    • 한국환경과학회지
    • /
    • 제8권3호
    • /
    • pp.355-361
    • /
    • 1999
  • The aim of this study is to develop the water quality simulation model (BAYQUAL) that deal with the physical, chemical and biological aspects of fate/behavior of pollutants in the bay. BAYQUAL is a two dimensional, time-variable finite element water quality model based on the flow simulation model in bay(BAYFLOW). The algorithm is composed of a hydrodynamic module which solves the equations of motion and continuity, a pollutnat dispersion module which solves the dispersion-advection equation. The applicability and feasibility of the model are discussed by applications of the model to the Kwangyang bay of south coastal waters of Korea. Based on the field data, the BAYQUAL model was calibrated and verified. The results were in good agreement with measured value within relative error of 14% for COD, T-N, T-P. Numerical simulations of velocity components and tide amplitude(M2) were agreed closely with the actual data.

  • PDF

초음파 가진시 압력변동이 열전달 향상에 미치는 영향 (Effect of Pressure Variations on Augmentation of Heat Transfer by Ultrasonic Vibrations)

  • 양호동;오율권
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.1069-1074
    • /
    • 2004
  • This study investigated the effect of pressure variations on augmentation of heat transfer when the ultrasonic waves were applied. The augmentation ratio of heat transfer was experimentally investigated and was compared with the profiles of pressure distributions calculated applying a coupled finite element-boundary element method (coupled FE-BEM). As the ultrasonic intensities increase from 70W to 340W, the velocity of the liquid paraffin is found to increase as well as kinetic energy, This physical behavior known as quasi-Eckart streaming results from acoustic pressure variations in the liquid. Especially, the higher acoustic pressure distribution near two ultrasonic transducers develops more intensive flow (quasi-Eckart streaming), destroying the flow instability. Also, the profile of acoustic pressure variation is consistent with that of augmentation of heat transfer. This mechanism is believed to increase the ratio of hear transfer coefficient.

  • PDF

원주형 고무구조물의 형상과 재질변화에 따른 충격흡수특성 (A Study on the Impact Absorbing Characteristics for Various Shape and Hardness of Cylindrical Rubber Structures)

  • 김동진;김완두;이영신
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.441-446
    • /
    • 2004
  • Mechanical systems with rubber parts have been used widely in industry fields. The evaluation of the physical characteristics of rubber is important in rubber application. Rubber material is useful to machine component for excellent shock absorbing characteristics. The impact characteristics of rubber were examined by experimental and finite element method. The impact test was conducted with a free-drop type impact tester. The ABAQUS/Explicit was used for finite element analysis. The effects of thickness and diameter of the cylindrical rubber structures were investigated. The impact absorbing ratio of the rubber material was studied order to compare the peak reaction force of the specimen which only contained aluminum against the specimen with the inserted rubber part.

  • PDF

주파수 응답함수를 이용한 구조 파라메터 예측 (Identification of Structural Parameters from Frequency Response Functions)

  • 김규식;강연준
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 추계학술대회논문집
    • /
    • pp.863-869
    • /
    • 2007
  • An improved method based on a normal frequency response function (FRF) is proposed to identify structural parameters such as mass, stiffness and damping matrices directly from the FRFs of a linear mechanical system. The method for estimating structural parameters directly from the measured FRFs of a structure is presented. This paper demonstrates that the characteristic matrices are extracted more accurately by using a weighted equation and eliminating the matrix inverse operation. The method is verified for a four degree-of-freedom lumped parameter system and an eight degree-of-freedom finite element beam. Experimental verification is also performed for a free-free steel beam whose size and physical properties are the same as those of the finite element beam. The results show that the structural parameters, especially the damping matrix, can be estimated more accurately by the proposed method.

  • PDF

박막구조해석을 위한 표면효과를 고려하는 연속체 모델 (Continuum Model considering Surface Effect for Thin film)

  • 최진복;정광섭;조맹효
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.527-531
    • /
    • 2007
  • The classical continuum theory-based thin film model is independent of their size and the surface effect can be ignored. But the surface to bulk ratio becomes very large in nano-size structures such as nano film, nano wire and nano beam. In this case, surface effect plays an important role and its contribution of the surface effect must be considered. Molecular dynamics simulation has been a conventional way to analyze these ultra-thin structures but structures in the range between submicro and micro are difficult to analyze by classical molecular dynamics due to the restriction of computing resources and time. Therefore, in present study, the continuum-based method is considered to predict the overall physical and mechanical properties of the structures in nano-scale, especially, for the thin-film. The proposed continuum based-thin plate finite element is efficient and reliable for the prediction of nano-scale film behavior.

  • PDF

충격 하중을 받은 무근콘크리트의 최대주응력 비교 연구 (Comparative Study on the Maximum Principal Stress of Non-Reinforced Concrete Caused by Impact Load)

  • 송정언;박훈;김승곤
    • 화약ㆍ발파
    • /
    • 제30권1호
    • /
    • pp.1-8
    • /
    • 2012
  • 본 연구에서는 충격 하중을 받은 콘크리트 재료의 내부 주응력 변화를 확인하기 위하여 Visual FEA 유한요소 프로그램으로 콘크리트 재료의 단면을 모델링하여 절점에서의 최대주응력을 분석하였다. 결과적으로, 콘크리트 재료의 탄성계수가 작을수록 최대주응력은 증가하는 것으로 나타났고, 콘크리트 재료의 물성 변화에 따라 최대주응력 편차는 2~3배 차이를 나타냈다.